期刊文献+

MK-LSSVM与AdaBoost-SVM在分类中的比较和研究 被引量:2

Research and Comparison of MK-LSSVM and AdaBoost-SVM in Classification
下载PDF
导出
摘要 对基于多核函数的最小二乘支持向量机算法(MK-LSSVM)和采用支持向量机作为弱分类器的AdaBoost算法(AdaBoost-SVM)这两种新型的分类算法进行了研究。将这两种算法应用于求解心脏单光子发射计算机化断层显像(SPECT)图像数据的二分类问题和iris数据集的多分类问题,并从平均分类精度和平均运行时间两方面进行比较分析。最后通过Sammon映射给出了分类的可视化结果。试验结果验证了MK-LSSVM算法和AdaBoost-SVM算法的有效性和可行性,且MK-LSSVM算法在不损失分类精度的前提下,能够获得比AdaBoost-SVM更快的训练速度。 Two of the classification algorithms, i. e. , the least square support vector machine based on multiple kernel function ( MK-LSSVM ) and the AdaBoost algorithm using support vector machine (AdaBoost-SVM} as weak classifier are researched. These two algorithms are applied in solving problem of Binary classification of image data of cardiac single photon emission computerized tomography ( SPECT ) and multi- classification of iris data, and the comparison is carried out based on average classification accuracy and average running time, and visualized classification results are given via Sammon mapping. The results of tests verify the effectiveness and feasibility of MK-LSSVM algorithm and AdaBuost algorithm, and faster training speed is offered by MK-LSSVM algorithm than AdaBoost-SVM without loss of classification accuracy.
作者 刘卫华
出处 《自动化仪表》 CAS 北大核心 2013年第5期13-15,19,共4页 Process Automation Instrumentation
关键词 多核核函数 最小二乘支持向量机 ADABOOST算法 神经网络 拉格朗日函数 分类精度 Multiple kernel function Least square support vector machine ( LS-SVM } AdaBoost algorithm Neural network Lagrangian function Classification accuracy
  • 相关文献

参考文献10

二级参考文献43

共引文献337

同被引文献15

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部