期刊文献+

基于RUKF-IMM的非线性系统滤波 被引量:7

Filtering of nonlinear systems with measurement loss by RUKF-IM M
原文传递
导出
摘要 从交互式多模型估计(IMM)方法的特点出发,提出用IMM估计方法对有测量数据丢失的非线性系统进行估计.IMM模型集中包含两个模型:一个模型对应测量数据丢失情况,另一个对应测量数据未丢失.最终基于两个模型的估计进行融合得到估计结果,改善估计器在测量信息丢失情况下的稳定性.采用随机无迹卡尔曼滤波(RUKF)方法对每个模型分别进行滤波,消除标准无迹卡尔曼滤波(UKF)方法的系统误差.仿真结果表明:在测量信息丢失的情况下,提出的估计方法在稳定性与估计性能上都优于传统的基于单模型的非线性系统混合估计方法. From interacting multiple model(IMM) estimation,the s tates in nonlinear systems with measurement loss were estimated by IMM approach. The model set in the IMM approach contained two models,one of them corresponde d to the situations with measurement loss and the other one corresponded to the situations without measurement loss.Final estimates were obtained based on the fusion of the two model estimates.This approach improved the stability of the e stimator in systems with missed measurements.Each filter in IMM used the random ized unscented Kalman(RUKF) to estimate the states.RUKF eliminated the system errors caused by the unscented Kalman fitler(UKF).Thus the accuracy of the est imation was also improved.The simulation results show the proposed approach is more stable and accurate than the traditional one-model mixture estimation appr oaches in nonlinear systems with measurement loss.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第5期57-63,共7页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 基金项目国家自然科学基金资助项目(61174142) 中央高校基本科研业务费专项资金资助项目(2011QNA4036) 航空科学基金资助项目(20102076002) 高等学校博士学科点专项科研基金资助项目(20100101110055 20120101110115) 浙江省自然科学基金资助项目(R1100234 Z1090423)
关键词 非线性系统 混合估计 交互式多模型估计(IMM) 随机无迹卡尔曼滤波(RUKF) 测量丢失 nonlinear system mixture estimation interact ing multiple model estimation(IMM) randomized unscented Kalman filter(RUKF) measurement loss
  • 相关文献

参考文献20

  • 1Sun Shuli. Optimal linear estimation for systems with multiple packet dropouts[J]. Automatica, 2008, 44 (5) : 1333-1342.
  • 2Bruno S. Kalman filtering with intermittent observa- tions[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1453-1464.
  • 3Huang M, Dey S. Stability of Kalman filtering with Markovian packet losses[J]. Automatica, 2007, 43 (4) : 598-607.
  • 4Liu X H, Andrea G. Kalman filtering with partial ob- servation losses[C]//43rd IEEE Conference on Deci sion and Control. Piscatway: Institute of Electrical and Electronics Engineers Inc, 2004: 4180-4186.
  • 5Mo Y, Sinopoli B. A characterization of the critical value for Kalman filtering with intermittent observa- tions[C]//47th IEEE Conference on Decision and Control. Piscatway: Institute of Electrical and Elec- tronics Engineers Inc, 2009: 2692-2697.
  • 6Dunik J, Straka O, Simandl M. The development of a randomized unscented Kalman filter[C]//Proceedings of the 18th IFAC World Congress. New York: Cur- ran Associates Inc, 2011:8-13.
  • 7Nakamon S, Caballero-Aguila R, Hermoso-Carazo A. Signal estimation with nonlinear uncertain obser- vations using covariance informatio [J]. Journal of Statiscita Computation and Simulation, 2009, 79(1):55-56.
  • 8NaNacara W, Yaz E E. Recursive estimator for linear and nonlinear systems with uncertain observations [J]. Signal Processing, 1997, 62(2): 215-218.
  • 9Alfonso, Branko F R, Luca T. Cramer-Rao bound for nonlinear filtering with pd< 1 and its application to target tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(8): 1916-1924.
  • 10Hermoso-Carazo A, Linaress-Perez J. Different ap- proaches for state filtering in nonlinear systems with uncertain observations[J]. Applied Mathmatics and Computation, 2007, 187(2) : 708-724.

同被引文献60

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部