期刊文献+

基于ARIMA与RBF组合模型的短时交通量预测 被引量:2

Traffic flow prediction based on hybrid ARIMA and RBF model
下载PDF
导出
摘要 通过对柳州市某对称交叉路口交通量状况的调查分析,提出一种基于自回归求和滑动平均(ARIMA)与径向基函数神经网络(RBF)非线性组合模型的短时交通量预测模型,利用实测数据对组合模型和单一模型进行仿真实验.实例分析表明:组合模型的预测结果比单一模型更加精确,适合于实时的短时交通量预测. In the investigation and analysis of traffic flow situation at a symmetric intersection in the city of Liuzhou, a combined model which combined ARIMA (Autoregressive Integrated Moving Average) model and RBF neural network is proposed and set into a short-term traffic flow foreeasting simulation experiment. The result shows that the combined model prediction is more accurate than that of single model, and suitable for real-time short-term traffic flow orediction.
出处 《广西工学院学报》 CAS 2013年第2期6-9,共4页 Journal of Guangxi University of Technology
基金 广西自然科学基金项目(2011GXNSFF018004)资助
关键词 短时交通量预测 自回归求和滑动平均模型 RBF神经网络 short-term traffic flow prediction ARIMA model RBF neural network
  • 相关文献

参考文献9

二级参考文献49

共引文献65

同被引文献26

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部