期刊文献+

基于改进的ISODATA算法的大样本数据聚类方法研究 被引量:5

RESEARCH OF LARGE SAMPLE DATA CLUSTERING METHOD BASED ON IMPROVED ISODATA ALGORITHM
原文传递
导出
摘要 针对数量大、数据结构复杂、离散度大的样本数据的聚类分析,采用ISODATA算法实现。ISODATA算法是1种基于统计模式识别的非监督学习动态聚类方法,是大样本数据聚类分析常用的方法,但该算法需要预先确定初始聚类参数。本文提出了基于黄金分割法来度量聚类的有效性,该方法能动态计算聚类度量参数,以此实现大样本数据的有效聚类。实验证明:该方法能够合理、有效的进行数据聚类。 How to extract effective feature data form the large sample,complex structures and dispersion data is the key and difficult of the pattern recognition,the ISODATA algorithm is one of the common algorithm of large samples data clustering.While,the inadequacies of the algorithm is need to pre-determine initial cluster parameters.The paper proposed to measure the effectiveness of clustering based on the golden section method,the method can dynamically calculate the clustering metrics,and achieve effective clustering of large sample data.The results show that the method can select the most representative and best characteristic features from the original large sample data.
出处 《内蒙古农业大学学报(自然科学版)》 CAS 北大核心 2013年第1期133-137,共5页 Journal of Inner Mongolia Agricultural University(Natural Science Edition)
基金 国家自然科学基金资助项目(50901039)
关键词 ISODATA 大样本 黄金分割法 数据聚类 ISODATA large sample data golden section method data clustering
  • 相关文献

参考文献7

二级参考文献15

  • 1王汉芝,刘振全.一种新的确定K-均值算法初始聚类中心的方法[J].天津科技大学学报,2005,20(4):76-79. 被引量:9
  • 2朱学锋,韩荣阁,杨若红.基于模糊预测系统的观测数据野值剔除方法[J].系统工程与电子技术,2006,28(3):478-482. 被引量:9
  • 3Mac Queen J. Some Methods for Classification and Analysis of Multivariate Observations[J]. Proceeding of the 5th Berkeley Symposium on Mathematics Statistic Problem, 1967, (1).
  • 4Huang Z. Extensions to The K-means Algorithm for Clustering Large Data Set with Categorical Values [J]. Data Mining and Knowledge Discovery,1998,(2).
  • 5Dubes R C,Jain A K.Validity Studies in Clustering Methodologies[J]. Pattern Recognition, 1979, 12(11).
  • 6Siddheswar Ray, Rose H. Tuff. Determination of Number of Clusters in K-Means Clustering and Application in Color Image Segmentation[J]. ICAPRDT'99, Calcutta,India,1999,(12).
  • 7Tsunenori Ishioka. Extended K-means with an Efficient Estimation of the Number of Clusters[J]. Proceedings of the Second International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2000), Hong Kong, China, 2000.
  • 8Pal N R and J. C. Bezdek. On Cluster Validity for the Fuzzy cmeans Model[J]. IEEE Transaction on Fuzzy Systems,1995.
  • 9Moguerza J M, Munoz A, Martin-Merino M. Detecting the Number of Clusters Using a Support Vector Machine Approach[J]. International Conference on Artificial Neural Networks-ICANN,2002.
  • 10黄怀德.振动工程(上)[M].北京:中国宇航出版社,1993.

共引文献40

同被引文献36

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部