期刊文献+

两种近似计算Caputo导数的有限差分方法 被引量:1

Two Finite Difference Methods for Calculating Caputo Derivative Approximately
下载PDF
导出
摘要 有差分法作为数值求微分程一种手段,已经了广泛应用.为了使Caputo数计算更加精确,通过有差分法建立了性插值(格式I)和分片二次插值(格式II)两种近似计算格式,并对这两种格式误差进行了分析和对比,果表明,格式II可更优误差估计,因此格式II可推广应用分数阶微分程求中. As a means of numerical solution of differential equations,the finite difference method has been widely used.In order to make the calculation of Caputo derivative more accurate,the paper constructs two approximate calculation formats of linear interpolation(Format I) and slice two interpolation(Format II) through the finite difference method,and makes analyses and comparisons of errors of the two formats.The results show that Format II can obtain a better error estimation,so Format II can be generalized to the solution of fractional differential equations.
出处 《温州大学学报(自然科学版)》 2013年第2期1-6,共6页 Journal of Wenzhou University(Natural Science Edition)
基金 国家自然科学基金(11161026)
关键词 Caputo数 性插值 分片二次插值 Caputo Derivative Linear Interpolation Slice Two Interpolation
  • 相关文献

参考文献10

  • 1Shen B, Shih A J, Xiao G X. A heat transfer model based on finite difference method for grinding [J]. Joumal of Manufacturing Science and Engineering, 2011, 133(3): 031001.
  • 2Chakraborty R, Ghosh A. Finite difference method for computation of 1D pollutant migration through saturated homogeneous soil media [J]. International Joumal of Geomechanics, 2011, 11(1): 12-22.
  • 3Varanasi C, Murthy J Y, Mathur S. A meshless finite difference method for conjugate heat conduction problems [J]. Journal of Heat Transfer, 2010, 132(8): 081303.
  • 4Kendrick B K. An iterative finite difference method for solving the quantum hydrodynamic equations of motion [J]. Journal of Molecular Structure: Theochem, 2010, 943(1-3): 158-167.
  • 5Koohkan M R, Attamejad R, Nasseri M. Time domain analysis of dam-reservoir interaction: using coupled differential quadrature and finite difference methods [J]. Engineering Computations, 2010, 27(2): 280-294.
  • 6Baleanu D. Fractional constrained systems and Caputo derivatives [J]. Journal of Computational and Nonlinear Dynamics, 2008, 3(2): 021102.
  • 7Daftardar-Gejji V, Jafari H. Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives [J]. Journal of Mathematcal Analysis and Applications, 2007,328(2): 1026-1033.
  • 8Agrawal O P. Generalized Euler-Lagrange equations and mransversality conditions for FVPs in terms of the Caputo derivative [J]. Journal of vibration and control, 2003, 13(9-10): 1217-1237.
  • 9Voroshilov A A, Kilbas A A. Existence conditions for a classical solution of the cauchy problem for the diffusion- wave equation with a partial Caputo derivative [J]. Doklady Mathematics, 2007, 75(3): 407-410.
  • 10Diethelm K. The analysis fractional differential equations [J]. Journal of Mathematical Analysis and Applications, 2002, 265(2): 229-248.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部