期刊文献+

一种自适应权值的多特征融合分类方法 被引量:11

Adaptive weighted feature fusion classification method
下载PDF
导出
摘要 由于类别较多或者特征单一等原因,传统的支持向量机方法对一些复杂问题的分类,很难获得好的识别效果。首先使用一种树状结构将概率支持向量机推广到多分类问题;然后提出一种自适应权值的多特征融合方法,根据概率输出自动调整不同分类器的相关权值,将所有分类器的结果进行加权得到最终的判决结果。为解决实际应用中常出现的非平衡问题,提出综合权值方法,将类别权值与特征权值进行综合。实验结果表明,融合方法较之传统的支持向量机一对一方法以及概率支持向量机方法能够获得更高的识别率;对于非平衡问题,综合权值方法可以得到更加合理的识别结果。 Because the number of classes is large or the feature is simple, the conventional support vector machine (SVM) cannot achieve a good recognition performance for some complex classification problems. First- ly, the SVM method is extended to the multi-class problems by using a tree structure. Then, an adaptive weighted feature fusion method is introduced. The weights of the different classifiers are automatically adjusted according to the probabillstic output and are used to calculate the final result. To solve the unbalance problem in the real applications, a compositive weights method which integrates the classes weights and the character weights is proposed. Simulation experiments show that the proposed method can achieve a higher recognition rate compared with the conventional SVM and probabilistie SVM (PSVM) and the compositive weights method can achieve a more logical result for the unbalance problems.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第6期1133-1137,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(61203137)资助课题
关键词 模式识别 特征融合 概率支持向量机 自适应权值 pattern recognition feature fusion probabilistie support vector machine adaptive weight
  • 相关文献

参考文献2

二级参考文献24

共引文献14

同被引文献84

  • 1马占欣,王新社,黄维通,陆玉昌.对最小置信度门限的置疑[J].计算机科学,2007,34(6):216-218. 被引量:5
  • 2俞龙江,杨英,孙圣和.基于最小二乘拟合法的焊点形状检测[J].仪器仪表学报,2007,28(7):1255-1258. 被引量:16
  • 3Lowe D G. Distinctive Image Features from Scale-Invariant Key- points[J]. International Journal of Computer Vision, 2004, 60 (2):91-100.
  • 4Mallat S. A Theory of Multi Resolution Signal Decomposition: the Wavelet Representation[J]. IEEE Trans. on Pattern Analy- sis and Machine Intelligence, 1989,11 (7) : 674-693.
  • 5Zhou Z H. Ensemble Methods: Foundations and Algorithms [M]. Boca Raton, FL: Chapman & HalI/CRC, 2012.
  • 6刘小芳.基于核理论的遥感图像分类方法研究[D].成都:电子科技大学,2011.
  • 7Domenieoni C, Peng Jing, Gunopulos D. Locally Adaptive Metric Nearest-Neighbor Classification[J]. IEEE Trans. Pattern Anal. Mach. Intell. ,2002,24(9) : 1281-1285.
  • 8Benediktsson J A, Chanussot J, Fauvel M. Multiple classifier systems in remote sensing: from basics to recent developments [C]//Haindl M, Kittler J, Roli F, eds. Proceedings of the 7th in- ternational conference on Multiple classifier systems (MCS' 07). Berlin, Heidelberg: Springer-Verlag, 2007 : 501-512.
  • 9Yang Yi, Shawn N. Spatial pyramid co-occurrence for image classification[C]//IEEE International Conference on Computer Vision. 2011 : 1465-1472.
  • 10张一嘉.局域网链路层数据帧识别算法的设计与实现[J].通信对抗,2007(4):41-44. 被引量:12

引证文献11

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部