期刊文献+

网络用户信息浏览路径挖掘研究的发展 被引量:2

Development of Research on Information Browsing Path Mining of Network Users
原文传递
导出
摘要 随着网络技术的快速发展与广泛应用,对能够有效揭示网络用户兴趣、需求、行为特征的信息浏览路径进行挖掘,已成为一个新的研究热点。文章阐述了网络用户信息浏览路径挖掘的内涵;从路径的获取、挖掘方法、挖掘应用3个方面介绍了国内外目前的研究进展和主要观点;总结了现阶段浏览路径挖掘研究的不足之处,并对未来的研究前景进行了展望。 With the rapid development and wide application of Internet technology,mining information browsing path which can be used to effectively reveal the interests,needs and behavioral characteristics of network users has become a new research focus.This paper firstly introduces the connotation of information browsing path mining of network users.Then it describes the present research progress and main viewpoints at home and abroad from the 3 aspects such as the acquisition of path,the method of mining and the application of mining.Finally,it summarizes the inadequacies of the research on browsing path mining at the present stage and describes the future research prospect.
作者 唐伟 周倩
出处 《情报理论与实践》 CSSCI 北大核心 2013年第6期125-128,共4页 Information Studies:Theory & Application
关键词 浏览路径挖掘 聚类 关联规则 网络用户 browsing path mining clustering association rules internet user
  • 相关文献

参考文献11

二级参考文献68

共引文献83

同被引文献25

  • 1张玉连,王权.基于浏览行为和浏览内容的用户兴趣建模[J].现代图书情报技术,2007(6):52-55. 被引量:24
  • 2RESNICK P, VARIAN H. R. Recommender systems [ J ].Communications of the ACM, 1997,40 ( 3) : 56-58.
  • 3EUZENAT J, SHVAIKO R Ontology matching [ M ].[S. 1. ] : Springer, 2007: 101-102.
  • 4KOUTSONIKOLA V A, VAKALI A I. A fuzzy bi-clustering ap-proach to correlate Web users and pages [ J ]. InternationalJournal of Knowledge and Web Intelligence, 2009, 1 ( 1/2);3-23.
  • 5CHANG Y I,SHEN J H,CHEN T I. Adata mining basedmethod for the incremental update of supporting personalized in-formation filtering [ J]. Journal of Information Science and En-gineering, 2008 , 24 (1) ; 129-142.
  • 6LIU R R, JIA C X, ZHOU T,et al. Personal recommendationvia modified collaborative filtering [ J ]. Physica A-StatisticalMechanics and ITS Applications, 2009, 388 (4) : 462-468.
  • 7吕善国,吴效葵,曹义亲.基于网络结构的推荐算法[J].实验室研究与探索,2012 (7): 278-280,368.
  • 8朱琳可.基于社交网络的个性化推荐服务研究[D].西安:西北大学,2012.
  • 9Liu B. Web数据挖掘.北京:清华大学出版社,2013:384-422.
  • 10McCarty JA, Hastak M. Segmentation approaches in data-mining: A comparision of RFM, CHAID, and logistic regression. Journal of Business Research, 2006, 60(6): 656- 662.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部