期刊文献+

基于BP神经网络的教师教育技术能力培训评价 被引量:4

Evaluation of Teacher Education Technical Ability Training Based on BP Neural Network
下载PDF
导出
摘要 评价是贯穿整个培训过程的关键环节。为了对中学教师教育技术能力培训的效果进行科学有效地评价,提高培训工作的绩效,建立了基于BP神经网络的中学教师教育技术能力培训评价模型。通过Matlab 7.0对BP神经网络模型进行了训练,实例分析结果表明,该评价模型能够对中学教师教育技术能力培训的效果进行科学的评价,该模型具有较高的可行性、实用性,极大地提高了中学教师教育技术能力培训评价工作的效率,为教师教育技术培训评价开辟了新的方法。 Evaluation is the key link throughout the entire training process. In order to evaluate the training effect of middle school teacher education technique ability training scientifically and effectively and improve the performance of the training work, the evaluation model of middle school teacher education technique ability training is created based on the BP neural network. The BP neural network model is trained through Matlab 7.0. According to the result of the example analysis, the evaluation model can evaluate scientifically the training effect of middle school teacher education technique ability, the model is feasible and practical highly, greatly improves the middle school teacher education technique ability training evaluation work efficiency, opens a new method for teacher education technology training evaluation.
出处 《计算机技术与发展》 2013年第6期249-252,共4页 Computer Technology and Development
基金 2012年度辽宁省普通高等教育本科教学改革研究项目(666) 2012年锦州市社会科学重点研究课题 2012年渤海大学教师教育研究项目(29) 2011年渤海大学教改项目(92)
关键词 BP神经网络 教育技术能力培训 培训评价 层次分析法 BP neural network education technical ability training training evaluation analytic hierarchy process
  • 相关文献

参考文献10

二级参考文献31

共引文献79

同被引文献22

  • 1何玲,黎加厚.促进学生深度学习[J].计算机教与学.现代教学,2005(5):29-30. 被引量:1357
  • 2王珏.杜威的教育思想与深度学习[J].软件导刊,2005,4(9):6-8. 被引量:38
  • 3廖锦舜,何锫.基于模糊神经网络的软件质量评价方法[J].计算机技术与发展,2006,16(2):194-196. 被引量:11
  • 4乔维德.基于BP神经网络的现代远程教育教学质量评价模型的构建[J].中国远程教育,2006(07S):69-71. 被引量:19
  • 5王坚.大学生创业成功关键因素研究[D].华东理工大学,2012.
  • 6Yam J Y F, Chow T W S. Feed forward networks training speed enhancement by optimal initialization of the synaptic co-efficients]-J]. Neural Networks, IEEE Transactions on, 2001, 12(2): 430-434.
  • 7Lee H M, Chen C M, Huang T C. Learning efficiency improvement of back-propagation algorithm by error saturation prevention rnethod E Jl- Neurocomputing, 2001, 41(1): 125-143.
  • 8Marton F. and Sfilje R. On Qualitative differences in learning-Outcome and Process[J].British Journal of Edu- cational Psychology 1976(46): 4-11.
  • 9ROSS H, CEN, Y. Reinterpreting quality through assessingstudent engagement in china [G]. // SOLOMONIDES I, PETOCZ P, REID A (Eds.). Engaging with Learning in Higher Education. Faringdon, Oxfordshire: Libri, 2{}12: 383-411.
  • 10清华大学“全国大学生学习与发展追踪研究”课题.NSSE-China 2013问卷使用手册[Z].2013.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部