期刊文献+

基于应用驱动的异构体系结构模型

Heterogeneous architecture model based on application drive
原文传递
导出
摘要 科学计算应用问题在计算模型、处理过程以及对处理器、存储器和通信的要求方面存在巨大的差异。同一种结构难以适应差异巨大的应用,造成效率低下。解决途径在于可变的体系结构,让体系结构去适应不同的应用,而不是让应用去适应单一的体系结构。不同的应用决定了不同的应用程序结构,对于不同的应用程序结构,采用最适合的体系结构去匹配,实现应用决定体系结构的模型。结果表明,基于应用驱动的异构体系结构异构模型能够达到使运算高效率、低能耗的目的。最后给出了从不同应用得到最适应体系结构的方法。 Scientific computing application problems greatly differ in computing models, processing and the requirements of processors, memories and communications. The same structure is difficult to adapt to vastly different application problems, which results in low efficiency. The solution depends on the variable architecture, while making the architecture adapt to different applications, rather than making the different applications adapt to the same architecture. Differenl application problems determine different application structures. The most suitable system architecture was used to match a specific application structure to implement the model in which the application determines the architecture. The results show that the heterogeneous blended architecture model based on application drive has high computing efficiency and low power consumption. The method is given to obtain most suitable architectures from different applications in this paper.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期234-241,共8页 Journal of Tsinghua University(Science and Technology)
基金 国家"八六三"高技术项目(2007AA01Z425) 国家自然科学基金资助项目(90718015 60673157) 安徽省优秀青年人才基金项目(2012SQRL183)
关键词 异构体系结构 匹配 应用驱动 效率 heterogeneous architecture match application drive efficiency
  • 相关文献

参考文献12

  • 1李国杰.信息科学技术的长期发展趋势和我国的战略取向[J].中国科学:信息科学,2010,40(1):128-138. 被引量:35
  • 2邬江兴.云计算的高效能之路[J].华为技术专家论坛,2011(57) : 3 — 6.
  • 3沈绪榜,张发存,冯国臣,车得亮,王光.计算机体系结构的分类模型[J].计算机学报,2005,28(11):1759-1766. 被引量:10
  • 4El-Araby E. Performance bounds of partial run-timereconfiguration in high-performance reconfigurablecomputing[C]// HPRCTA'07. ACM, 2007.
  • 5Zain-ul-Abdin,Svensson B. Evolution in architectures andprogramming methodologies of coarse-gained reconfigurablecomputing [J]. Microprocessors and Microsystems, 2009,33: 161 - 178.
  • 6KIM Yoonjin. Design space exploration for efficient resourceutilization in coarse-grained reconfigurable architecture [J].IEEE Transactions on Very Large Scale Integration (VLSI)System , 2010, 18(10): 1471 - 1482.
  • 7Papadrakakis M. A new era in scientific computing: Domaindecomposition methods in hybrid CPU-GPU architectures[J]. Comput Methods Appl Mech Engrg , 2011,200 : 1490 -1508.
  • 8Malawski M,Gubala T, Bubak M. Component-basedapproach for programming and running scientific applicationson grids and clouds [J]. International Journal of HighPerformance Computing Applications , 2012,26(3) : 275 -295.
  • 9Evans J J, Lucas C E. Parallel application-level behavioralattributes for performance and energy management ofhigh-performance computing systems [J]. Cluster Comput,2013,16(1): 91-115.
  • 10Singh H, Lu G M, Lee M H,et al. MorphoSys: Case studyof a reconfigurable computing system targeting multimediaapplicationsfC]//37th Design Automation Conference.ACM, 2000.

二级参考文献19

  • 1谭明锋,龚正虎.基于ASIC实现的高速可扩展并行IP路由查找算法[J].电子学报,2005,33(2):209-213. 被引量:5
  • 2X.Sun.Scalability versus execution time in scalable system[J].Journal of Parallel and Distributed Computing,2002,62(2):173-192.
  • 3A.Gramma,A.Gupta,V.Kumar.Isoefficiensy function:a scalability metic for parallel algorithms and architecures[J].IEEE Parallel and Distributed Technology,1993,1(3):12-21.
  • 4X.Sun,D.Rover,Scalability of parallel algorithm-machine combinations[J].IEEE Transaction on Parallel Distributed Systems,1994,5:599-613.
  • 5Y Chen,X Sun,M Wu.Algorithm-system scalability of heterogeneous computing[J].Journal of Parallel and Distributed Computing,2008,68(11):1403-1412.
  • 6X.Sun,Y.Chen,M.Wu.Scalability of heterogeneous computing.Proceedings of the 34th International Conference on Parallel Processing.Los A lamitos:The IEEE Computer Society,2005.557-564.
  • 7A Danalis,G Marin,C Mccurdy,et al.The scalable heterogeneous computing(SHOC) benchmark suite.Proceedings of 10th GPGPU.New York:ACM,2010.1-12.
  • 8Manners D., Makimoto T.. Living with the Chip. London: Chapman & Hall, 1995
  • 9Hartenstein R.. Data-stream-based computing: Models and aarchitectural resources. Kaiserslautern University of Technology, Germany. http://hartenstein.de
  • 10Trelearen P.C. et al.. Data-driven and demand-driven computer architecture. ACM Computing Surveys, 1982, 14(1): 93~143

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部