期刊文献+

基于离散剪切波的压缩感知MRI图像重建 被引量:8

Reconstruction of compressed sensing MRI image based on discrete shearlet transform
下载PDF
导出
摘要 针对二维小波变换捕捉方向信息有限,不能稀疏地表示MRI图像中曲线状奇异特征的缺点,提出了一种基于离散剪切波变换的压缩感知MRI图像重建新方法。先对MRI图像作剪切波变换,得到各尺度、方向子带的剪切系数,再采用正交匹配追踪算法恢复稀疏处理后的系数,最后进行剪切波反变换得到重建图像。实验结果表明,与小波变换相比,基于离散剪切波的压缩感知MRI图像有更好的重建效果,更有利于保留纹理和边缘信息。 The two-dimensional wavelet transform for magnetic resonance imaging(MRI) images does not sparsely represent curve singularity characteristics,which can only capture the limited direction information.Pointing at this problem,this paper presented a new method based on discrete shearlet transform for compressed sensing MRI(CS-MRI).It got the frequency coefficients at all scales and in all directions after performing discrete shearlet transform to MRI image.Then it adopted orthogonal matching pursuit algorithm to recover the sparsing coefficients.Finally,it got the reconstructed image by inverse shearlet transform.Experimental results show that,compared with wavelet transform,discrete shearlet transform for CS-MRI improves quality of reconstructed image and preserves more information about texture and edge.
出处 《计算机应用研究》 CSCD 北大核心 2013年第6期1895-1898,共4页 Application Research of Computers
基金 天津市应用基础及前沿技术研究计划资助项目(10JCYBJC00200)
关键词 离散剪切波变换 压缩感知 MRI图像重构 稀疏化 discrete shearlet transform compressed sensing(CS) MRI image's reconstruction sparse
  • 相关文献

参考文献13

  • 1DONOHO D. Compressed sensing[J]. IEEE Trans on Information Theory,2006,52 ( 4 ) : 1289-1306.
  • 2CANDES E,TAO T. Near optimal signal recovery from random projections : universal encoding strategies [ J ]. IEEE Trans on Information Theory,2006,52( 12 ) :5406-5425.
  • 3AKCAKAYA M, NAM S, HU P,et al. Compressed sensing with wavelet domain dependencies for coronary MRI :a retrospective study[ J ].IEEE Trans on Medical Imaging,2011,30(5 ) :1090-1099.
  • 4HALDAR J P, HEMANDO D, LIANG Zhi-pei. Compressed sensing MRI with random encoding[ J ]. IEEE Trans on Medical Imaging, 2011,30(4) :893-903.
  • 5OTAZO R, KIM D, AXEI. L,et al. C.mbination of compressed sensing and parallel imaging for highly accelerated first-pass cardiae perfusion MRI[ J ]. Magnetic Resonance in Medicine, 2010,64 ( 3 ) : 767- 776.
  • 6ZHAO Bo, HALDAR J P, BRINEGAR C,et al. Low rank matrix recovery fnr real-time cardiac MRI [ C ]//Proc of the 7th IEEE International Symposium on Biomedical Imaging. 2010:996-999.
  • 7胥斌,唐远炎,房斌.基于剪切波变换的纹理图像分类[J].计算机工程与应用,2011,47(29):15-17. 被引量:4
  • 8GUO Kang-hui, LABATE D. Optimally sparse multidimensional representation using shearle/s[ J ]. SIAM Journal on Mathematical Analysis ,2007,39( 1 ) :298-318.
  • 9EASLEY G, I,IM W, LA BATE D. Sparse directional image representations using the discrete shearlet transform[ J ]. Applied and Computational Harmonic Analysis ,2008,25 ( 1 ) :25-46.
  • 10胡海智,孙辉,邓承志,陈习,柳枝华,占惠星.基于Shearlet变换的图像去噪算法[J].计算机应用,2010,30(6):1562-1564. 被引量:23

二级参考文献35

  • 1CANDES E J,DONOHO D L.Fast discrete curvelet transform[J].Multiscale Modeling Simulation,2005(5):861-899.
  • 2DO M N,VETTERLI M.Contourlets,beyond wavelets[M].WELLAND G V.[S.1.]:Academic Press,2003.
  • 3GUO K,LABATE D.Optimally Sparse multidimensional representation using Shearleta[J].SIAM Journal on Mathematical Analysis,2007,39(1):298-318.
  • 4EASLEY G R,LABATE D.Sparse directional image representations using the discrete Shearlet transform[J].Applied Computational Harmonic Analysis,2008,25(1):25-46.
  • 5PO D D-Y,DO M N.Directional muhiscale modeling of images using the Contourlet transform[J].IEEE Transactions on Imase Processing,2006,15(6):1610-1620.
  • 6MALLAT S.A wavelet tour of signal processing[M].2nd ed.[S.1.]:Academic Press,1999.
  • 7STARCK J L,CANDES E J,DONOHO D L.The curvelet transform for image de-noising[J].IEEE Transactions on Image Processing,2002,11(6):670-684.
  • 8DO M N,VETTERLI M.The Contourlet transform:An efficient directional multiresolution image resolution[J].IEEE Transactions on Image Processing,2005,14(12):2091-2106.
  • 9Carter P H.Texture discrimination using wavelets[C]//SPIE Applications of Digital Image Processing XIV, 1991,1567:432-438.
  • 10Naghdy G, Wang J, Ogunbona P.Texture analysis using Gabor wavdets[C]//Proceedings of the IS & T/SPIE Symposium on Electronic Imaging, 1996,2657: 74-85.

共引文献31

同被引文献66

  • 1王超.基于压缩感知的贪婪迭代重构算法[J].数据采集与处理,2012,27(S2):298-303. 被引量:12
  • 2Michael K.Ng.Preconditioned Iterative Methods for Algebraic Systems from Multiplicative Half-Quadratic Regularization Image Restorations[J].Numerical Mathematics(Theory,Methods and Applications),2010,3(4):461-474. 被引量:1
  • 3焦李成,谭山,刘芳.脊波理论:从脊波变换到Curvelet变换[J].工程数学学报,2005,22(5):761-773. 被引量:40
  • 4常象宇,饶过,吴一戎,等.如何在压缩感知中正确使用阈值迭代算法[J].中国科学,2010,40(1).
  • 5Larkman D J,Nunes R G.Parallel magnetic resonance imaging[J].Physics in Medicine and Biology,2007,52(7):15.
  • 6Zonoobi D,Kassim A A.Weighted-CS for reconstruction of highly under-sampled dynamic MRI sequences[C] //Proc of Signal & Information Processing Association Annual Summit and Conference.[S.l.] :IEEE Press,2012:1-5.
  • 7Akcakaya M,Nam S,Hu Peng,et al.Compressed sensing with wavelet domain dependencies for coronary MRI:a retrospective study[J].IEEE Trans on Medical Imaging,2011,30(5):1090-1099.
  • 8Hao Wangli,Li Jianwu,Qu Xiaobo,et al.Fast iterative contourlet thresholding for compressed sensing MRI[J].Electronics Letters,2013,49(19):1206-1208.
  • 9Wang Yanhua,Ying Lei.Compressed sensing dynamic cardiac cine MRI using learned spatiotemporal dictionary[J].IEEE Trans on Biomedical Enginerring,2014,61(4):1109-1120.
  • 10Ravishankar S,Bresler Y.MR image reconstruction from highly under sampled K-space data by dictionary learning[J].IEEE Trans on Medical Imaging,2011,30(5):1028-1041.

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部