期刊文献+

耿氏管的合金金属及正面反面工艺的研究

Investigation of the metallization of Gunn diode and process
原文传递
导出
摘要 介绍了一种实现低成本、高功率、高散热性能耿氏管的工艺制备流程,利用分子束外延生长技术(MBE)在高掺杂的InP衬底上生长n n+型的一致性掺杂外延结构,在外延结构正面利用电子束蒸发Ge/Au/Ni/Au作为器件阴极和电镀金制备作为散热层,背面通过化学湿法腐蚀形成台面(MESA)。在不同的温度下进行了退火对比实验,研究了阴极合金形成良好欧姆接触的温度条件。结果表明:退火温度为450℃时形成的金属电极的接触效果最好。关于耿氏管的正面反面制备工艺简便易行,利用Ge/Au/Ni/Au制备金属电极得到了良好的欧姆接触性能,用氯基溶液进行了湿法腐蚀实验得到了较好的垂直台面(MESA)。该制备方法有望实现优良性能的耿氏器件。 A practical heat sink fabrication process for low-cost, high-power and millimeter-wave devices was presented. The uniformly doping epitaxial structure (n n+) was grown by molecular beam epitaxy (MBE) on heavily-doped n++ InP substrate. Also a batch-fabrication technique for mesas with gold heat sink was proposed. A technology was developed to form ohmic contacts to indium phosphide Gunn diodes, and the metallization of cathode and anode was fabricated by Ge/Au/Ni/Au evaporation, and was annealed at different temperature. Results show that the best ohmic contact is formed at 450 ℃. The complete fabrication procedure is described to realize the Gunn devices for low-cost millimeter- wave applications. By the way, wet etching could get approximately vertical MESA structure by HC1- based solution.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第5期1265-1268,共4页 Infrared and Laser Engineering
基金 中国科学院知识创新工程项目(2A2011YYYJ-1123)
关键词 耿氏管 太赫兹 磷化铟 退火 合金金属 Gunn diode THz InP anneal metallization
  • 相关文献

参考文献1

二级参考文献14

  • 1Hoogeveen R W M, Van Der A R J, Goede P H. Extended wavelength InGaAs infrared (1.0-2.4mm) detector arrays on SCIAMACHY for space-based spectrometry of the earth atmosphere[J]. Infrared Phy & Tech, 2001, 42:1-16.
  • 2MacDougal M, Geske J, Wang C, et al. Low dark current InGaAs detector arrays for night vision and astronomy [C]// SPIE, 2009, 7298: 72983F-1-72983F-10.
  • 3Cohen M J, Lange M J, Ettenberg M H, et al. A thin film indium gallium arsenide focal plane array for visible and near infrared hyperspectral imaging[C]// LEOS' 1999: 744- 745.
  • 4Hokelek E, Robinson G Y. A study of schottky contacts on indium phosphide[J]. J Appl Phys, 1983, 54(9): 5199-5205.
  • 5Fatemi N' S. The achievement of near-theoretical-minimum contact resistance to InP[J]. J Appl Phys, 1993, 74(11): 6740- 6746.
  • 6Kuphal E. Low resistance ohmic contacts to n- and p-InP[J]. Solid-State Electronics, 1981, 24: 69-78.
  • 7Hirokuni Asamizu, Akira Yamaguchi, Yasuhiro Iguchi, et al. The effect of a thin antimony layer addition on PdZn ohmic contacts for p-type InP [J]. Applied Surface Science, 2000, 159-160: 174-178.
  • 8Wang L C, Park M Ho. Ge/Pd(Zn) ohmic contact scheme on p-InP based on the solid phase regrowth principle [J]. Appl Phys Lett, 1995, 66(24): 3310-3312.
  • 9Kim M, Kim C Y, Kwon Y S. InP/InGaAs heterojunction bipolar transistors with low-resistance contact on heavily doped InP emitter layer [J]. Appl Phys Lett, 2004, 84(15): 2934-2936.
  • 10Hasenberg T C, Garmire E. An improved Au/Be contact to p-type InP[J]. J Appl Phys, 1987, 61(2): 808-809.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部