期刊文献+

基于改进稀疏非负矩阵分解方法的乳腺癌微阵列表达数据分析 被引量:6

Breast cancer genes expression data analysis based on improved sparse matrix factorization techniques
下载PDF
导出
摘要 目的利用改进稀疏非负矩阵分解技术对乳腺癌基因表达谱数据进行双向聚类,挖掘与乳腺癌发病密切相关的基因及其生物过程。方法用小波对22 283个基因的人乳腺癌基因表达数据进行去噪,然后通过T统计初步筛选出5 067个基因作为改进稀疏非负矩阵的输入矩阵,进行双向聚类进一步筛选出81个与乳腺癌密切相关的显著基因,最后通过cytoscape对81个与乳腺癌密切相关的显著基因构建生物过程结构图。结果筛选出与乳腺癌相关的基因、可能相关的基因以及这些基因参与的生物过程之间的关系。结论改进稀疏非负矩阵分解与现存的其他非负矩阵分解算法相比具有聚类效果好、稳定性强且迭代次数少的优点,适合于乳腺癌差异表达基因的提取。 Objective To biocluster breast cancer gene expression profiles by improved sparse non-negative matrix factorization( sparse non-negative matrix factorization, SparseNMF), and to dig out the related genes and biological processes of breast cancer. Methods With wavelet to preprocess 22 283 human breast cancer gene expression profiles data for removing noise by T test screening out 5 067 genes preliminary, then to chose 81 significant genes of breast cancer by improved SparseNMF bioclustering, then construct the biological processes structure where the 81 significant genes involved. Results The significant genes, related gene of breast cancer and these genes invol- ving in biological processes were screened out. Conclusion The proposed sparse NMF algorithm often achieves better clustering performance and stability with shorter computing time to other existing NMF algorithms, fitting to extract breast cancer significant genes.
出处 《安徽医科大学学报》 CAS 北大核心 2013年第7期725-729,共5页 Acta Universitatis Medicinalis Anhui
基金 国家自然科学基金项目(编号:61271446) 上海市科委青年科技启明星计划(A类)(编号:11QA1402900) 上海市教委科研创新项目(编号:11YZ141)
关键词 乳腺癌 非负矩阵分解 基因表达谱数据 breast cancer nonnegative matrix factorization microarray gene expression data
  • 相关文献

参考文献12

  • 1Perou C M, Soprlie T, Eisen M B, et al. Molecular portraits of human breast turnouts [ J ]. Nature, 2000, 406 (6797) : 747 - 52.
  • 2谭小宁,周知,谢小雷,罗志勇.雌激素受体信号通路在乳腺癌发生和治疗中的作用[J].生命科学,2011,23(10):969-974. 被引量:18
  • 3Hoyer P O. Non-negative matrix factorization with sparseness con- straints[J]. J Mach Learn Res, 2004, 5(9) :1457 -69.
  • 4Kim H, Park H. Sparse non-negative matrix factorizations v/a al- ternating non-negativity-constrained least squares for microarray data analysis [ J ]. Bioinformatics, 2007, 23 ( 12 ) : 1495 - 502.
  • 5Smoot M E, Ono K, Ruscheinski J, et al. Cytoscape 2.8: newfeatures for data integration and network visualization [ J ]. Bioin- formatics, 2011, 27(3): 431 -2.
  • 6Hoyer P O. Non-negative sparse coding [ C ]. Martigny Switzer- land, Neural networks for signal processing, 2002 : 557 - 65.
  • 7Pascual-Montano A. Nonsmooth nonnegative matrix factorization [ J]. IEEE Trans Pattern Anal Machine Intell, 2006, 28 (3) :403 -15.
  • 8Pauca P, Piper J, Plemmons R. Nonnegative matrix factorization for spectral data analysis [ J ]. Linear. Algebra Appl, 2006, 416 ( 1 ) :29 -47.
  • 9Langer S, Singer C F, Hudelist G, et al. Jun and Fos family pro- tein expression in human breast cancer : Correlation of protein ex- pression and elinieopathological parameters [ J ]. Eur J Gynaeeol Oncol, 2006, 27(4) :345 -52.
  • 10Neeb A, Wallbaum S, Novac N, et al. The immediate early gene Ier2 promotes tumor cell motility and metastasis, and predicts poor survival of colorectal cancer patients [ J ]. Oncogene, 2012, 31 (33) :3796 - 806.

二级参考文献41

  • 1LiLiu,De-HuaWu,Yan-QingDing.Tiaml gene expression and its significance in colorectal carcinoma[J].World Journal of Gastroenterology,2005,11(5):705-707. 被引量:16
  • 2Kim KH, Bender JR. Membrane-initiated actions of estrogen on the endothelium. Mol Cell Endocrinol, 2009, 308(1-2): 3-8.
  • 3Vranic S, Gatalica Z, Deng H, et al. ER-et36, a novel isoform of ER-c~66, is commonly over-expressed in apocrine and adenoid cystic carcinomas of the breast. J Clin Pathol, 2011, 64(1): 54-7.
  • 4Revankar CM, Cimino DF, Sklar LA, et al. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science, 2005, 307(5715): 1625-30.
  • 5Prossnitz ER, Arterburn JB, Smith HO, et al. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol, 2008, 70(1): 165-90.
  • 6Prossnitz ER, Maggiolini M. Mechanisms of estrogen signaling and gene expression via GPR30. Mol Cell Endocrinol, 2009, 308(1-2): 32-8.
  • 7Qiu J, Ronnekleiv OK, Kelly MJ. Modulation of hypothalamic neuronal activity through a novel G-protein- coupled estrogen membrane receptor. Steroids, 2008, 73(%10): 985-91.
  • 8Borgquist S, Holm C, Stendahl M, et al. Oestrogen receptors alpha and beta show different associations to clinicopathological parameters and their co-expression might predict a better response to endocrine treatment in breast cancel: J Clin Pathol, 2008, 61(2): 197-203.
  • 9Lapidus RG, Nass S J, Butash KA, et al. Mapping of ER gene CpG island methylation by methylation-specific polymerase chain reaction. Cancer Res, 1998, 58(12): 2515-9.
  • 10Huang J, Li X, Yi P, et al. Targeting estrogen responsive elements (EREs): design of potent transactivators for ERE-containing genes. Mol Cell Endocrinol, 2004, 218(1- 2): 65-78.

共引文献45

同被引文献60

  • 1裴静,余昌俊,王本忠,胡向阳.ER、PR、HER-2在绝经后乳腺浸润性导管癌组织中的表达及临床病理相关性的研究[J].安徽医科大学学报,2005,40(1):41-43. 被引量:12
  • 2李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801. 被引量:51
  • 3阮晓钢,晁浩.肿瘤识别过程中特征基因的选取[J].控制工程,2007,14(4):373-375. 被引量:15
  • 4Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537.
  • 5Alizadeh A A,Elsen M B,Davis R E,et al.Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J].Nature,2000,403(12):503-511.
  • 6Khan J,Wei J S,Ringner M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J].Nature Medicine,2001,7(6):673-679.
  • 7Haferlach T,Kohlmann A,Wieczorek L,et al.Clinical utility of microarray-based gene expression profiling in the diagnosis and sub classification of leukemia:report from the international microarray innovations in Leukemia study group[J].Journal of Clinical Oncology,2010,28(15):2529-2537.
  • 8Singh D,Febbo P G,Ross K,et al.Gene expression correlates of clinical prostate cancer behavior[J].Cancer Cell,2002,1(2):203-209.
  • 9Shannon C E.A mathematical theory of communication[J].Bell System Technical Journal,1948,27:379-423,623-656.
  • 10Wu Y,Zhou Y,Saveriades G,et al.Local Shannon entropy measure with statistical tests for image randomness[J].Information Sciences,2013,222(10):323-342.

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部