摘要
针对非线性方程组数值求解问题 ,利用嵌入法思想给出了一类隐式迭代法 ,这类迭代法包含了知名学者M .K .Jain1 985年和 1 986年的两个工作 .采用效率较高的Chipman等效代换方法实现了这类方法的计算过程 ,并从稳定性、计算量以及收敛范围等方面对其进行了大量的数值试验 ,结果表明隐式迭代法在以上几方面均优于传统迭代法 .将该方法在波动方程反问题上进行了应用 ,进一步表明了该方法的广泛适用性 .
Bossed on an embedding method, a class of implicit iterative methods is established for solving nonlinear system of equations, and it includes the work of noted scholar M. K. Jain in 1985 and 1986. Computation is accomplished using the effective Chipman's method. Numerical tests are carried out for stability, computational cost, and convergent domain. Numerical results indicate that the implicit methods have the advantage of traditional methods on these aspects. Finally, applications are made to the inverse problem of wave equation. It further indicates the wide applicability of the implicit methods.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2000年第4期133-136,共4页
Journal of Harbin Institute of Technology
基金
国家自然科学基金
博士点专项基金和哈工大校基金资助项目
关键词
非线性方程组
隐式迭代法
波动方程
数值试验
nonlinear system of equations
implicit iterative method
inverse problem of wave equation