期刊文献+

基于多粒子群协同的动态多目标优化算法及应用 被引量:21

Multiple Particle Swarms Coevolutionary Algorithm for Dynamic Multi-Objective Optimization Problems and Its Application
下载PDF
导出
摘要 在现实生活中大多数多目标优化问题都随时间变化,这就要求优化算法在时间约束内快速找到动态变化Pareto最优解或Pareto边界.基于此,提出一种基于多种群协同的动态多目标粒子群改进算法,旨在利用多种群竞争和协作两种模式互相配合,从而达到快速高效求解动态多目标优化问题的目的,多种群竞争模式主要任务是对解空间进行"勘探"搜索,当竞争失效后,自适应切换到协作模式对解空间进行"开采"搜索.通过对多种群协同搜索概率分析,证明多种群相比单种群具有更高的搜索效率,通过对3类动态多目标测试函数仿真,验证了改进算法的有效性;最后将该方法应用于动态系统PID控制器的参数整定上,得到了较优的控制参数,取得满意的控制效果. Most of multi-objective optimization problems in the real-world are dynamic, so optimization algorithms are required to continuously track time-varying Pareto optimal set (POS) or Pareto optimal front (POF) rapidly with high accuracy. To meet this requirement, an improved variant based on particle swarm optimization (PSO) is proposed, in which competitive and cooperative models are combined. The competitive model is used to explore the search space, and when it fails, this model is adaptively switched to the cooperation model to exploit the search space. Co-evolution probability analysis indicates that searching solution using multiple swarms is much more efficient than using a single one. Numerical simulation also shows that the proposed algorithm is an excellent alternative for solving dynamic multi-objective optimization problems. Finally, the proposed algorithm is applied to the PID controller parameter tuning for a dynamic system and gets a satisfactory control.
出处 《计算机研究与发展》 EI CSCD 北大核心 2013年第6期1313-1323,共11页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61272470) 湖北省自然科学基金项目(2012FFB6406) 中央高校特色团队基金项目(CUGL100230)
关键词 多粒子群协同 动态多目标优化问题 动态系统 PID控制 柯西变异 multiple swarm co-evolutionary~ dynamic multi-objective optimization problems dynamicsystem PID controller cauchy mutation
  • 相关文献

参考文献16

  • 1Farina M, Deb K, Amato P. Dynamic multiobjective optimization problems: Test cases, approximations, and applications EJ~. IEEE Trans on Evolutionary Computation, 2004, 8(5): 425-442.
  • 2Greeff M, Engelbrecht A P. Solving dynamic multi objective problems with vector evaluated particle swarm optimization [C] //Proc of Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 2008 : 2917-2924.
  • 3Talukder AKMKA, Kirley M. A pareto following variation operator for evolutionary dynamic multi-objective optimization [C] //Proc of Congress on Evolutionary Computation. Piscataway, NJ: IEEE, 2008:2270-2277.
  • 4ChiKeong G, Chen T K. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization [J]. IEEE Trans on Evolutionary Computation, 2009, 13(1): 103-127.
  • 5刘淳安,王宇平.基于新模型的动态多目标优化进化算法[J].计算机研究与发展,2008,45(4):603-611. 被引量:14
  • 6Potter M A. The design and analysis of a computational model of cooperative coevolution [D]. Fairfax, VA: George Mason University, 1997.
  • 7van den Bergh F, Engelbreeht A P. A cooperative approach to particle swarm optimization [J].IEEE Trans on Evolutionary Computation, 2004, 8(3): 225-239.
  • 8van den Bergh F, Engelbreeht A P. Effect of swarm size on cooperative particle swarm optimizaters [C] //Proc of the Genetic and Evolutionary Computation. New York: ACM, 2001 : 1-8.
  • 9Baskar S, Suganthan P N. A novel concurrent particle swarm optimization [C] //Proc of Congress on Evolutionary Computation. Piscataway, NJ; IEEE, 2004: 792-796.
  • 10Liu Jing. Research on coevolutionary evolutionary algorithm and its application [D]. Xi'an: Xidian University, 2004.

二级参考文献158

  • 1窦全胜,周春光,徐中宇,潘冠宇.动态优化环境下的群核进化粒子群优化方法[J].计算机研究与发展,2006,43(1):89-95. 被引量:20
  • 2徐雪松,彭春华.动态环境下的免疫优化[J].计算机工程与应用,2007,43(1):27-29. 被引量:2
  • 3Yao X. A new simulated annealing algorithm, Int. J. Computer Math, 1995, 56: 161-168.
  • 4Glover F. Future paths for integer programming and links to artificial intelligence. Computers and Operations Research,1986, 5: 533-549.
  • 5Fogel D B, System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling. Needham Heights, MA 02194: Ginn Press, 1991.
  • 6Yao X, Liu Y. Evolving neural network ensembles by minimizagion of mutual information. International Journal of Hybrid Intelligent Systems, 2004, 1(1): 12 21.
  • 7Chandra A, Yao X. Evoiutionary framework for the construction of diverse hybrid ensembles, In Proc. the 13th European Symposium on Artificial Neural Networks (ESANN'2005),Bruges, Belgium, April 27-29, 2005, pp,253-258.
  • 8Chandra A, Yao X. DIVACE: Diverse and accurate ensemble learning algorithm. Lecture Notes in Computer Science,2004, 3177:619-625.
  • 9Chandra A, Yao X. Ensemble learning using multiobjective evolutionary algorithms, Journal of Mathematical Modelling and Algorithms, May 2005 (to appear).
  • 10Abbass H A. A memetic Pareto evolutionary approach to artificial neural networks. In Proc. the 14th Australian Joint Conference on Artificial Intelligence, Berlin, 2000, pp.1-12.

共引文献42

同被引文献253

引证文献21

二级引证文献174

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部