期刊文献+

Deformed oscillator algebra for quantum superintegrable systems in two-dimensional Euclidean space and on a complex two-sphere

Deformed oscillator algebra for quantum superintegrable systems in two-dimensional Euclidean space and on a complex two-sphere
原文传递
导出
摘要 In this work, we study superintegrable quantum systems in two-dimensional Euclidean space and on a complex twosphere with second-order constants of motion. We show that these constants of motion satisfy the deformed oscillator algebra. Then, we easily calculate the energy eigenvalues in an algebraic way by solving of a system of two equations satisfied by its structure function. The results are in agreement to the ones obtained from the solution of the relevant Schroedinger equation. In this work, we study superintegrable quantum systems in two-dimensional Euclidean space and on a complex twosphere with second-order constants of motion. We show that these constants of motion satisfy the deformed oscillator algebra. Then, we easily calculate the energy eigenvalues in an algebraic way by solving of a system of two equations satisfied by its structure function. The results are in agreement to the ones obtained from the solution of the relevant Schroedinger equation.
机构地区 Department of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第6期175-180,共6页 中国物理B(英文版)
关键词 superintegrable systems constants of motion deformed oscillator algebra structure function superintegrable systems, constants of motion, deformed oscillator algebra, structure function
  • 相关文献

参考文献54

  • 1Arnold V I 1978 Mathematical Methods of Classical Mechanics, Grad- uate Texts in Mathematics (Berlin: Springer-Verlag).
  • 2Evans N W 1991 J. Math. Phys. 32 3369.
  • 3Evans N W 1990 Phys. Lett. A 147 483.
  • 4Wojciechowski S 1983 Phys. Lett. A 95 279.
  • 5Ranada M F 1997 J. Math. Phys. 38 4165.
  • 6Eisenhart L P 1934 Ann. Math. 35 287.
  • 7Tegment A and Vercin A 2004 Int. J. Mod. Phys. A 19 393.
  • 8Calzada J A, Negro J and del Olmo M A 2007 Phys. Atom. Nucl. 70 496.
  • 9Calzada J A, Kuru S and del Olmo M A 2009 SIGMA 5 39.
  • 10Zhang Y F 2003 Chin. Phys. 11 1194.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部