期刊文献+

稀疏近邻保持投影

SPARSE NEIGHBOURHOOD PRESERVING PROJECTION
下载PDF
导出
摘要 从全局特征保持和局部特征保持的角度出发,提出一种稀疏近邻保持投影(SNPE)算法。该算法融合了稀疏重构信息和局部近邻重构信息。投影后的低维数据保持了高维数据的全局几何结构信息和局部近邻近似非线性的结构信息。在Yale、AR和UMIST上的实验表明所提算法是有效的。 In the term of global feature preserving and local feature preserving, a dimensionality reduction algorithm called sparse neighbourhood preserving projection (SNPE) is proposed. The algorithm fuses the sparse reconstruction information and local neighbourhood reconstruction information. The projected low-dimensional data preserve the global geometric structure information and local neighbourhood approximated nonlinear structure information of the high-dimensional data. Experiments operated on Yale, AR and UMIST face dataset show that the proposed algorithm is effective.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第6期266-268,294,共4页 Computer Applications and Software
关键词 降维 稀疏保持投影 近邻保持嵌入 加权融合 平衡参数 Dimensionality reduction Sparse preserving projection Neighbourhood preserving embedding Weighted fusion Tradeoff parameter
  • 相关文献

参考文献10

  • 1Hotelling H. Analysis of a complex of statistical variables into principal components[ J ]. J. Edu. Psychol, 1933 (24) :417 - 441.
  • 2Fisher R A. The use of multiple measurements in taxonomic problems [J]. Ann. Eug,1936(7) :179 - 188.
  • 3Belkin M,Niyogi P. Laplacian eigenmaps and spectral techniques forembedding and clustering [ M ] //Advances in Neur Information Pro-cessing Systems, Vol. 17. Cambridge: MIT Press,2003.
  • 4Roweis S T, Saul L K. Nonlinear dimensionality reduction by locallylinear embedding[ J] . Science,2000,5500(290) :2323 -2326.
  • 5He X F, Niyogi P. Locality preserving projections[ C]//Proceedings ofthe Conference on Advances in Neural Information Processing Systems,2003.
  • 6He X F, Cai D,Yan S C, et al. Neighborhood preserving embedding[C].IEEE International Conference on Computer Vision (ICCV) ,2005.
  • 7Wei J, Peng H. Neighbourhood preserving based semi-supervised di-mensionality reduction [ J]. Electronics Letters,2008 ,44 ( 20 ) : 1190-1191.
  • 8Wright J, Yang A, Sastry S,et al. Robust face recognition via sparserepresentation [ J ]. IEEE Transactions on Pattern Analysis and MachineIntelligence,2009,31 (2) :210 —227.
  • 9郑豪,金忠.一种有监督的稀疏保持近邻嵌入算法[J].计算机工程,2011,37(16):155-157. 被引量:3
  • 10Qiao L, Chen S, Tan X. Sparsity preserving projections with applica-tions to face recognition[ J]. Pattern Recognition, 2010 ,43 (1) :331 -341.

二级参考文献11

  • 1Donoho D.Compressed Sensing. IEEE Transactions on Information Theory . 2006
  • 2Martinez A M,Benavente R.The AR Face Database. http://rvll.ecn.purdue.edu/-aleix/aleix_face_DB.html . 1998
  • 3Turk Matthew,Pentlad Alex.Eigenfaces for recognition. Journal of Cognitive Neuroscience . 1991
  • 4Roweis ST,Saul LK.Nonlinear dimensionality reduction by locally linear embedding. Science . 2000
  • 5Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation . 2003
  • 6He X F,Cai D,Yan S C,et al.Neighborhood preserving embedding. Proceedings of the Tenth IEEE International Conference on Computer Vision . 2005
  • 7Baraniuk R.A lecture on compressive sensing. IEEE Signal Processing Magazine . 2007
  • 8Cai Deng,He Xiaofei,Han Jiawei.Spectral Regression forDimensionality Reduction. Department of Computer ScienceTechnical Report No.2856 . 2007
  • 9王国强,欧宗瑛,刘典婷,苏铁明.基于保持近邻判别嵌入的人脸识别[J].大连理工大学学报,2008,48(3):378-382. 被引量:11
  • 10刘敏,李晓东,王振海.一种新的有监督保局投影人脸识别算法[J].计算机应用,2009,29(5):1416-1418. 被引量:12

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部