期刊文献+

2.0μm掺铥超短脉冲光纤激光器研究进展及展望 被引量:20

Progress and Prospect on Ultrafast Tm-Doped Fiber Lasers at 2 μm Wavelength
原文传递
导出
摘要 2.0μm掺铥脉冲光纤激光器在人眼安全雷达、激光医疗、光电对抗以及特殊材料加工等领域具有重要应用,近年来成为新型光纤激光源研究的热点。对国内外2.0μm掺铥超短脉冲光纤激光器的研究进展进行了归纳与总结,内容包括:实现掺铥超短激光脉冲振荡输出的技术手段;新型被动锁模可饱和吸收材料,被动锁模掺铥光纤激光输出的性能及优劣;高功率掺铥超短脉冲光纤放大器的最新研究进展等。技术手段涉及主动锁模、非线性偏振演化锁模、可饱和吸收体锁模和非线性放大环镜锁模。新型可饱和吸收材料主要包括半导体、碳纳米管、石墨烯以及氧化石墨烯等。本课题组最新研究结果表明高功率掺铥超短脉冲光纤放大器的平均输出功率可达80 W,激光脉冲宽度为20ps,激光中心波长为1963nm。对此类超短脉冲光纤激光器的进一步发展及应用给予了展望。 Thulium-doped pulsed fiber lasers have attracted considerable interests as novel laser source, due to their wide applications in eye-safe lidar, laser medical system, optoelectronic countermeasure and special material processing. The research and development on ultrafast thulium-doped fiber laser at 2μm wavelength are classified, which include the technical approach of the ultrafast thuliun doped pulse output, the novel saturable absorbers of passive mode-locking, the characteristics of thulium-doped passively mode-locked fiber laser output, and the development of high power thulium-doped ultrafast pulse amplifier. Up to now, several main mode-locked techniques, such as actively mode-locking, nonlinear polarization evolution, saturable absorber, and nonlinear amplifier loop mirror have been used to achieve ultrashort laser pulses in thulium-doped fiber lasers. The saturable absorber material mainly include semiconductor, carbon nanotubes, graphene and graphene oxide. The most recent work shows that 80 W average power at 1963 nm has been obtained in a three-stage fiber amplifier with pulse width of 20 ps. The prospect of further development and application of such ultrafast laser sources is discussed in the last part of the article.
作者 王璞 刘江
出处 《中国激光》 EI CAS CSCD 北大核心 2013年第6期10-21,共12页 Chinese Journal of Lasers
基金 国家自然科学基金重点项目(61235010) 国家自然科学基金面上项目(61177048) 北京市自然科学基金B类重点项目(KZ2011100050011)资助课题
关键词 激光器 超快激光器 光纤放大器 掺铥光纤 被动锁模 中红外激光 lasers ultrafast laser fiber amplifier thulium-doped fiber passively mode-locked mid-infrared lasers
  • 相关文献

参考文献64

  • 1M. Eckerle, C. Kieleck, J. Swiderski et al. Actively Q-switched and mode-locked Tm3+-doped silicate 2 fJ.m fiber laser for supercontinuum generation in fluoride fiber[J]. Opt. Lett., 2012,37(4): 512-514.
  • 2D. Buccoliero , H. Steffensen, O. Banget al . Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber[J]. Appl. Phys. Lett. , 2010, 97(6): 061106.
  • 3C. R. Phillips, Carsten Langrock , J. S. Pelc et al . Supercontinuum generation in quasi-phase-matched LiNb03 waveguide pumped by a Tm-doped fiber laser system[J]. Opt. Lett. , 2011, 36(9): 3912-3914.
  • 4O. P. Kulkarni, V. V. Alexander, M. Kumar et al . Supercontinuum generation from - l. 9 to 4. 5 fJ.m in ZBLAN fiber with high average power generation beyond 3. 8 fJ.m using a thulium-doped fiber amplifier[J]. J. Opt. Soc. Am. B, 2011, 28(0): 2486-2498.
  • 5Y. Tang, C. Huang, S. Wang et al . High-power narrow-bandwidth thulium fiber laser with an all-fiber cavity[J]. Opt. Express, 2012, 20(16): 17539- 17544.
  • 6Z. Yunjun , Y. Baoquan , J. Youlun et al . LD-cladding-pumped 50 pm linewidth Tm3+ -doped silica fiber laser[J]. Opt. Express, 2008,16(11): 7715-7719.
  • 7F. Wang, D. Shen , D. Fan et al . Spectrum narrowing of high power Trn r fiber laser using a volume Bragg grating[J]. Opt. Express, 2010, 18(9): 8937-8941.
  • 8S. D. Jackson, Terence A. King. High-power diode-cladding-pumped Tm-doped silica fiber laser [J]. Opt. Lett., 2008, 23(18): 1462-1464.
  • 9P. F. Moulton, G. A. Rines, E. Slobodtchikov et al . Tm-doped fiber lasers: fundamentals and power scaling[J]. IEEE J. Sel. Top. Quantum Electron , , 2009, 15(1): 85-92.
  • 10Thomas Ehrenreich, Ryan Leveille, Imtiaz Majid et al . 1-kW, all-glass Tm fiber laser[CJ. SPIE, 2010. 7580: 16.

二级参考文献54

  • 1Thomas F. Carruthers, IrI N. Duling III. 10 GHz, 1. 3 ps erbium fiber laser employing soliton pulse shortening[J]. Opt. Lett. , 1996, 21(13): 1927-1929.
  • 2Q. L. Bao, H. Zhang, Y. Wang et al.. Atomic layer graphene as saturable absorber for ultrafast pulsed laser[J]. Adv. Funct. Mater, 2009, 19(19): 3077-3083.
  • 3Z. Q. Luo, M. Zhou, J. Wenga al.. Graphene based passively Q-switched dual-wavelength erbium doped fiber laser[J]. Opt. gett. , 2010, 35(21): 3709-3711.
  • 4K. S, Novoselov, A. K. Geim, S. V. Morozov et al.. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696) : 666-669.
  • 5K. S. Novoselov, A. K. Geim, S. V. Morozov et al.. Two- dimensional gas of massless dirac fermions in graphene [J]. Nature, 2005, 438(7065) : 197-200.
  • 6A. C. Ferrari, J. C. Meyer, V. Scardaci et al.. Raman spectrum of graphene and graphene layers[J]. Phys. Rev. Lett. , 2006, 97(18): 187401.
  • 7D. Popa, Z. Sun, F. Torrisi et al.. Sub 200 fs pulse generation from a graphene mode-locked fiber laser[J]. Appl. Phys. Lett. , 2010, 97(20): 203106.
  • 8H. Zhang, D. Y. Tang, Z. M. Zhaoet al.. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene [J]. Opt. Eccpress, 2009, 17(20): 17630-17635.
  • 9F. Bonaccorso, Z. Sun, T. Hasan et al.. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4:611-622.
  • 10Amos Martinez, Kazuyuki Fuse, Bo Xu et al.. Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing [J]. Opt. Express, 2010, 18 ( 22 ):23054-23061.

共引文献76

同被引文献219

引证文献20

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部