期刊文献+

Spectral investigation of Sm^(3+)/Yb^(3+) co-doped sodium tellurite glass 被引量:1

Spectral investigation of Sm^(3+)/Yb^(3+) co-doped sodium tellurite glass
原文传递
导出
摘要 Sm3+/yb3+ co-doped tellurite glasses are prepared by melt-quenching technique. The density of the glasses varies between 4.65 and 4.84 g/cm3. The optical absorption spectra consist of eight bands in the wavelength range of 350-2 000 nm, which correspond to the transitions from ground level 6H5/2 to the various excited states of the Sm3+ ion. Energy band gaps vary in the range of 2.73 2.91 eV, and the Urbach energy ranges from 0.21 to 0.27. Emission spectra exhibit four peaks originating from the 4G5/2 energy level centered at 576, 613, 657, and 718 nm. Quenches in emission bands may be due to the energy transfer from the Sm3+ to Yb3+ ions. Sm3+/yb3+ co-doped tellurite glasses are prepared by melt-quenching technique. The density of the glasses varies between 4.65 and 4.84 g/cm3. The optical absorption spectra consist of eight bands in the wavelength range of 350-2 000 nm, which correspond to the transitions from ground level 6H5/2 to the various excited states of the Sm3+ ion. Energy band gaps vary in the range of 2.73 2.91 eV, and the Urbach energy ranges from 0.21 to 0.27. Emission spectra exhibit four peaks originating from the 4G5/2 energy level centered at 576, 613, 657, and 718 nm. Quenches in emission bands may be due to the energy transfer from the Sm3+ to Yb3+ ions.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2013年第6期62-65,共4页 中国光学快报(英文版)
基金 support fromthe Research Management Centre,University Technology Malaysia (RMC,UTM) through the researchgrants (VOTE ERGS 4L032 and 07J80,MoHE) F.Nawaz extends his gratitude to the financial support by UTM through the International Doctoral Fellowship(UTM.J.10.01/13.14/1/128)
  • 相关文献

参考文献21

  • 1G. V. Prakash, D. N. Rao, and A. K. Bhatnagar, Solid State Commun. 119, 39 (2001).
  • 2D. He, J. Zhang, G. Wang, Z. Duan, S. Dai, and L. Hu, Chin. Opt. Lett. 4, 39 (2006).
  • 3M. C. Fearries, P. R. Morkel, and J. E. Townsend, Elec- tron. Lett. 24, 709 (1988).
  • 4G. Turky and M. Davy, Mater. Chem. Phys. 77, 48 (2002).
  • 5A. Agarwal, I. Pal, S. Sanghi, and M. P. Aggarwal, Opt. Mater. 32, 339 (2009).
  • 6Y. K. Sharma, S. S. L. Surana, and R. K. Singh, J. Rare Earths 27, 773 (2009).
  • 7G. Tang, H. Xiong, W. Chen, and L. Luo J. Non-Cryst. Solids. 37, 2463 (2011).
  • 8J. Yang, L. Wen, S. Dai, L. Hu, and Z. Jiang, Chin. Phys. Lett. 1, 611 (2003).
  • 9G. Lakshminarayana , R. Yang, J. R. Qiu, M. G. Brik , G. A. Kumar, and I. V. Kityk, J. Phys. D Appl. Phys. 42, 015414 (2009).
  • 10X. Zou and H. Toratani, J. Phys. Rev. B 52, 15889 (1995).

同被引文献9

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部