期刊文献+

基于方向边缘匹配的人行横道与停止线检测 被引量:2

Pedestrian Crossing and Stop Line Detection Based on Oriented-edge Match
下载PDF
导出
摘要 针对智能车辆视觉导航系统的路面标线实时感知问题,提出基于方向边缘匹配实现人行横道和停止线的检测算法。利用逆透视映射表快速建立车辆前方感兴趣区域俯视图,提取图像垂直边缘和水平边缘,通过亮度上升与下降相邻边缘匹配检测定位人行横道与停止线。实验结果表明,该检测算法满足实时性要求,具有强鲁棒性,能应用于复杂城市道路环境。 In order to solve the real-time road marking recognition problem in the intelligent vehicle vision navigation system, a novel pedestrian crossing and stop line detection algorithm based on oriented-edge match is proposed. It builds top-view image through Inverse Perspective Mapping(IPM) transformation by a mapping table to accelerate IPM process. It abstracts vertical oriented-edge and horizontal oriented-edge. The pedestrian crossing and stop line can be detected by matching adjacent up and down edges to bands. Experimental results illustrate that the algorithm is effective for real-time analysis and robust under difficult urban road circumstances.
出处 《计算机工程》 CAS CSCD 2013年第6期261-265,282,共6页 Computer Engineering
基金 国家自然科学基金资助重大项目(90820302) 国家自然科学基金资助项目(60805027) 博士点基金资助项目(200805330005)
关键词 方向边缘 逆透视映射 感兴趣区域 线性拟合 匹配 随机抽样一致性 oriented-edge Inverse Perspective Mapping(IPM) Region of Interest(ROI) linear fitting match random sample consensus
  • 相关文献

参考文献11

  • 1Uddin M S, Shioyama T.Detection of Pedestrian Crossing Using Biploarity Feature——An Image-based Technique[J].IEEE Trans.on Intelligent Transportation Systems, 2005, 6(4): 439-445.
  • 2Uddin M S, Shioyama T.Bipolarity and Projective Invariant- based Zebra-crossing Detection for the Visually Im- paired[C]//Proc.of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.[S.l.]: IEEE Computer Society, 2005.
  • 3Sichelschmidt S, Haselhoff A, Kummert A.Pedestrian Crossing Detecting as a Part of Urban Pedestrian Safety System[C]//Proc.of IEEE Intelligent Vehicles Symposium.San Diego, USA: IEEE Press, 2010: 840-844.
  • 4Choi J, Lee J, Kim D, et al.Environment-detection-and- mapping Algorithm for Autonomous Driving in Rural or Off-road Environment[J].IEEE Trans.on Intelligent Transportation Systems, 2012, 13(2): 974-982.
  • 5梁昆,杨明,王春香,王冰.基于低精度GPS的智能车视觉导航方法[J].上海交通大学学报,2011,45(2):168-172. 被引量:10
  • 6Shamir L, Delaney J, Orlov N, et al.Image Segmentation and Pattern Recognition for Road Marking Analysis[C]]//Proc.of IEEE International Symposium on Industrial Electronics.[S.l.]: IEEE Press, 2004: 727-732.
  • 7Bertozzi M, Broggi A, Fascioli A.Stereo Inverse Per- spective Mapping: Theory and Application[J].Image and Vision Computing, 1998, 16(8): 585-590.
  • 8Lim Y, Lee M, Lee C, et al.Improvement of Stereo Vision- based Position and Velocity Estimation and Tracking Using a Stripe-based Disparity Estimation and Inverse Perspective Map-based Extended Kalman Filter[J].Optics and Lasers in Engineering, 2010, 48(9): 859-868.
  • 9Canny J.A Computational Approach for Edge Detection[J].IEEE Trans.on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
  • 10Koenederink J J.The Structure of Images[J].Biological Cybernetics, 1984, 50(5): 363-370.

二级参考文献7

  • 1Thrun S, Montemerlo M, Dahlkamp H, et al. Stan- ley: The robot that won the DARPA grand challenge [J]. Journal of Field Robotics, 2006,23 (9) : 661-692.
  • 2Darms M S, Rybski P E, Baker C, etal. Obstacle de- tection and tracking for the urban challenge[J]. IEEE Transactions on Intelligent Transportation Systems, 2007,10(3) : 475-483.
  • 3Cummins M, Newman P. FAB-MAP: Probabilistic localization and mapping in the space of appearance [J]. International Journal of Robotics Research, 2008, 27(6) :647-665.
  • 4Mattern N, Schubert R, Wanielik G. Image landmark based positioning in road safety applications using high accurate maps[J]. IEEE/ION Position, Location and Navigation Symposium, 2008, 5(8) : 1008-1013.
  • 5Welch G, Bishop G. An introduction to the kalman ill- ter[EB/OL]. (2007-03-08) [2010-05-26]. www. cs. unc. edu/-welch/kalman/kalmanIntro. html.
  • 6CyberC3 Group. The algorithm demonstration of road detection[EB/OL]. (2010-05-18) [2010-05-27]. ht- tp://v. youku. com/v show/id_XMTczOTIOMzY4. ht- ml.
  • 7李颢.基于视觉的智能车辆自主导航方法研究[D].上海:上海交通大学电子信息与电气工程学院,2008.

共引文献9

同被引文献21

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部