期刊文献+

蚂蚁算法在FIR数字滤波器优化设计中的参数 被引量:3

Parameters in FIR Digital Filters Optimal Design Based on Ant Algorithm
下载PDF
导出
摘要 蚂蚁算法中参数的准确分析和合理配置直接影响着算法的性能。在已完成的蚂蚁算法应用于有限冲激响应(Finite impulse response,FIR)数字滤波器优化设计研究基础上,分析了各个参数的不同配置对算法性能的影响,推导了参数配置的基本公式,提出了参数之间的一般配置原则。不失一般性,在最小最大优化准则下进行的仿真实验结果表明,文中提出的算法参数配置原则对于提高FIR数字滤波器的优化设计性能较为有效,同时还验证了蚂蚁算法在其他应用领域中的参数设置也满足参数配置原则,进一步表明本文的参数选取原则的可行性,有利于蚂蚁算法在优化问题中的推广和应用。 Accurate analysis and reasonable configuration of the parameters affect the perform- ance of ant algorithm (AA). Based on the well-studied AA for FIR digital filters optimal de- sign, the influence of the parameters in the algorithm is analyzed. Then the basic parameters configuration formula is derived and a general configuration principle is proposed. Without loss of generality, simulation results show that the proposed parameters configuration principle is effective in improving optimal design performance of FIR digital filters under mini-max (MM) optimality criterion. Meanwhile, they also show that AA for other application fields is adapta- ble to the parameters configuration principle, and the parameters configuration is feasible. It is believed that the results are beneficial to the development and application of AA in optimization problems.
出处 《数据采集与处理》 CSCD 北大核心 2013年第3期336-341,共6页 Journal of Data Acquisition and Processing
关键词 蚂蚁算法 FIR数字滤波器 参数配置 ant algorithm (AA) FIR digital filter parameter configuration
  • 相关文献

参考文献18

  • 1Kodek D M. Design of optimal finite word length FIR digital filters using integer programming tech- niques ]-Jl. IEEE Trans Aeoust, Speech, Signal Process, 1980,28..304-308.
  • 2Lim Y C, Parker S R. Discrete coefficient FIR digitalfilter design based upon an LMS criteria[J]. IEEE Trans Circuits Syst, 1983, CAS30:723-739.
  • 3Jaumard M, Minoux M, Siohan P. Finite precision design of FIR digital filters using a convexity proper- ty - J ]. IEEE Trans Acoust, Speech, Signal, Process, 1988,36 .. 407-411.
  • 4Cho N, Lee S U. Optimal design of finite precision FIR filters using linear programming with reduced constraints[J]. IEEE Trans Signal Process, 1998,46 : 195-199.
  • 5Benvenuto B, Marchesi M. Digital filters design by simulated annealing[J]. IEEE Trans Circuits Syst, 1989,36 459-460.
  • 6Gentili P, Piazza F, Uncini A. Efficient genetic algo- rithm design for power-of-two FIR filters, Proc [C]//IEEE Int Conf Acoust, Speech and Signal Prcocess. [S.I.]: IEEE, 1995:1268-1271.
  • 7Colorni A, Dorigo M, Maniczzo V. Distributed opti- mization by ant colonies [C]//Proc of ECAL91-Eu- ropean Conference on Artificial Life. Paris, France: Es. n. -], 1991.. 134-142.
  • 8项建弘,郭黎利,王丽敏.基于复数蚁群算法的自适应抗干扰天线[J].数据采集与处理,2010,25(2):143-147. 被引量:1
  • 9曹兰英,周晔,苏晓阳.一种用于SAR图像统计模型参数估计的蚁群算法[J].数据采集与处理,2009,24(1):78-81. 被引量:1
  • 10仰继连,曾以成,徐茂林.设计有限字长FIR数字滤波器的蚂蚁算法[J].数据采集与处理,2009,24(3):375-379. 被引量:3

二级参考文献80

共引文献216

同被引文献18

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部