摘要
讨论了局部对称共形平坦空间中极小子流形 M的一些性质 .通过对 M的 Ricci曲率和截面曲率的 Pinching条件的限制 ,得到了 M成为全测地子流形的两个内蕴刚性定理 。
This paper considers the compact submanifold M in a locally symmetric and conformally flat Riemann manifold. Considering the Pinching conditions of Ricci curvature and sectional curvature of M , it proves two intrinsic theorems, which improves and generalizes the results obtained previously.
出处
《扬州大学学报(自然科学版)》
CAS
CSCD
2000年第3期4-8,共5页
Journal of Yangzhou University:Natural Science Edition
关键词
共形平坦空间
极小子流形
全测地子流形
conformally flat
minimal submanifold
totally geodesic submanifold