期刊文献+

油酸修饰对纳米二氧化钛在变压器油中分散性的影响 被引量:8

Effect of Oleic Acid Surface Modification on Dispersibility of TiO_2 Nanoparticles in Transformer Oils
下载PDF
导出
摘要 利用油酸对纳米二氧化钛进行有机表面修饰,将修饰后的纳米粉体超声分散到变压器油中制备纳米二氧化钛改性变压器油,研究了表面修饰对纳米二氧化钛在变压器油中分散性的影响.采用X射线粉末衍射(XRD)、透射电镜(TEM)、红外光谱(FT-IR)和热分析(TG)对纳米二氧化钛的形貌、结构和表面修饰状态进行表征。结果表明,油酸与纳米二氧化钛表面以双齿桥连配位方式键合,在纳米二氧化钛表面形成了良好的修饰层。随着修饰剂的增加,尽管油酸在纳米二氧化钛表面的配位方式没有发生改变,但化学包覆量明显增加,表面油酸分子的排列也更为紧密,从而使纳米二氧化钛粒子在变压器油中的分散性和稳定性显著提高。当钛盐与油酸摩尔比为1:24时,二氧化钛纳米粒子可以稳定分散在变压器油中,室温静置30 d后仍保持澄清透明。 Oleic acid modified TiO2 nanoparticles were dispersed into transformer oil to prepare TiO2 nanoparticles modified transformer oil by ultrasonic treatment. The effect of surface modification on the dispersibility of TiO2 nanoparticles in the oil was investigated. The morphology, structure and surface modification state of TiO2 nanoparticles were characterized by X-ray powder diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectra (FT-IR) and thermogravimetric method (TG). The results show that oleic acid is bound on the surface of TiO2 nanoparticles by bidentate coordination, and an effective modification layer is formed. With the increasing of modifying agent dosage, although the coordination pattern ofoleic acid on the nanoparticle surface remains, the mass fraction of chemisorbed oleic acid obviously increases. The dispersibility and stability of TiO2 nanoparticles in the oil is dramatically improved. When the molar ratio of titanium salt to oleic acid is 1:24, TiO2 nanoparticles can be well dispersed in the transformer oil and keep transparent after aged for 30 d at room temperature.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2013年第6期594-598,共5页 Journal of Inorganic Materials
基金 国家自然科学基金(51077050) 中央高校基本科研业务费专项基金~~
关键词 纳米二氧化钛 油酸 表面修饰 分散性 变压器油 TiO2 nanoparticles oleic acid surface modification dispersibility transformer oil
  • 相关文献

参考文献4

二级参考文献28

  • 1肖玉方,姚钟麒,金道森.四硫富瓦烯衍生物/硬脂酸LB膜的表征[J].物理化学学报,1995,11(2):118-122. 被引量:2
  • 2姚超,高国生,林西平,杨绪杰,陆路德,汪信.硅烷偶联剂对纳米二氧化钛表面改性的研究[J].无机材料学报,2006,21(2):315-321. 被引量:121
  • 3Siddiquey I A,Ukaj E,Furusawa T,et al.Materials Chemistry and Physics,2007,116(6):162-168.
  • 4Kobayashi M,Kalriess W.Cosmetics & Toiletries,1997,112(6):83-86.
  • 5Kuo C Y,Lu S Y.Nanotechnology,2008,19(9):957051-957058.
  • 6Koo H J,Kim Y J,Lee Y H,et al.Advanced Materials,2008,20(1):195-199.
  • 7Yurdakal S,Palmisano G,Loddo V,et al.Journal of the American Chemical Society,2008,130(5):1568-1569.
  • 8Nakayama N,Hayashi T.Colloids and Surfaces,2008,317(1-3):543-550.
  • 9Thistlethwaite P J,Hook M S.Langmuir,2000,16(11):4993-4998.
  • 10Nussbaumer R J,Caseri W,Tervoort T,et al.Journal of Nanoparticle Research,2002,4(4):319-323.

共引文献136

同被引文献95

引证文献8

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部