期刊文献+

某焦化场地土壤多环芳烃污染数据的统计特征 被引量:15

Statistical characteristic analysis of soil PAHs in a coking contaminated site of China
原文传递
导出
摘要 分析污染场地调查数据的统计特征能够帮助判别污染物在场地中的空间变异特征以及污染来源和成因.本文以我国某焦化场地为对象,对采集的表层土壤114个样点16种多环芳烃(PAHs)含量数据进行多元统计和空间特征分析.结果表明:每种污染物的含量范围差异显著,具有高度的偏倚性;多元统计分析提取的前2个主成分可以有效代表原场地污染数据信息.选择苯并(a)蒽、苯并(b,k)荧蒽、苯并(a)芘和茚并(1,2,3-cd)芘4种污染物进行趋势分析和空间局部变异分析,在场地的东西和南北方向的污染物含量均表现出由低到高再到低的变化趋势,空间变异系数在场地的中部、西北及西南较高,其他区域变异系数较低. Statistical characteristic analysis of pollutants in contaminated sites can help identify the origin, generation, and spatial variation of different pollutants, and can reduce the uncertainty of site survey data. Taking a large and abandoned contaminated coking site of China as the object, 114 surface (0-50 cm) soil samples were collected, with the statistical and spatial characteristics of 16 priority PAHs (ΣPAHs) analyzed. The descriptive statistical analysis indicated that the ΣPAH levels varied significantly, and the data were severely skewed. The correlation matrix (CM) and principal component analysis (PCA) showed that the extracted first two principal components (PCs) could effectively represent the whole site pollution data. Four pollutants, i.e., Baa, BbfBkf, Bap, and Inp, were selected for trend analysis and spatial local variance analysis. In the east-west and north-south directions of the site, the pollution showed a low-high-low trend. The variation coefficient of pollution for the site was higher in the central, northwest, and southwest regions, while lower in the other regions.
出处 《应用生态学报》 CAS CSCD 北大核心 2013年第6期1722-1728,共7页 Chinese Journal of Applied Ecology
基金 国家环境保护公益性行业科研专项(201009015) 国家自然科学基金青年科学基金项目(40901249)资助
关键词 污染场地 趋势分析 多元统计分析 空间变异 contaminated site trend analysis multi-component statistical analysis spatial variation.
  • 相关文献

参考文献27

  • 1骆永明.中国污染场地修复的研究进展、问题与展望[J].环境监测管理与技术,2011,23(3):1-6. 被引量:201
  • 2骆永明.污染土壤修复技术研究现状与趋势[J].化学进展,2009,21(2):558-565. 被引量:311
  • 3Lark RM. Modelling complex soil properties as contami- nated regionalized variables. Geoderma, 2002, 106 : 173-190.
  • 4Rawlins BG, Lark RM, O' Donnell KE, et al. The as- sessment of point and diffuse metal pollution of soils from an urban geochemical survey of Sheffield, Eng- land. Soil Use and Management, 2005, 21 : 353-362.
  • 5Wu CF , Wu JP, Luo YM, et al. Spatial interpolation of severely skewed data with several peak values by the approach integrating kriging and triangular irregular net-work interpolation. Environmental Earth Science, 2011, 63:1093-1103.
  • 6Sinha P, Lambert MB, Schew WA. Evaluation of a risk- based environmental hot spot delineation algorithm. Journal of Hazardous Materials, 2007, 149:338-345.
  • 7吕建树,张祖陆,刘洋,代杰瑞,王学,王茂香.日照市土壤重金属来源解析及环境风险评价[J].地理学报,2012,67(7):971-984. 被引量:231
  • 8Arrouays D, Saby NPA, Thioulouse J, et al. Large trends in French topsoil characteristics are revealed by spatially constrained multivariate analysis. Geoderma, 2011, 161:107-114.
  • 9Selvarasu S, Kim DY, Karimi IA, et al. Combined data preprocessing and multivariate statistical analysis char- acterizes fed-batch culture of mouse hybridoma cells for rational medium design. Journal of Bioteehnology, 2010, 150:94-100.
  • 10Saby NPA, Thioulouse J, Jolivet CC, et al. Multivariate analysis of the spatial patterns of 8 trace elements using the French soil monitoring network data. Science of the Total Environment, 2009, 21:5644-5652.

二级参考文献135

共引文献838

同被引文献256

引证文献15

二级引证文献181

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部