期刊文献+

基于空间聚类的动物疫点分布划分算法研究

Partition Algorithm of Animal Foci Distribution Based on Spatial Clustering Analysis
下载PDF
导出
摘要 防疫管理资源(人员和设备等)的合理有效配置是动物疫情防疫管理关注的问题之一。根据疫点的空间分布情况,基于空间聚类和最大夹角边界确定方法,提出了对疫点分布进行分类划分的方法。首先研究了将K-Means聚类分析方法应用于疫点的空间聚类分析,实现了疫点按空间亲疏关系的分类。在此基础上,根据最大夹角原理,在聚类结果中确定了每一个分类的边界线,实现了对疫点按空间关系进行分类划分区域的方法,从而为疫情管理人员有效地监测与分析疫情空间分布模式、控制管理和预防动物疫情的扩散提供了支持。 The reasonable effective configuration of epidemic prevention and management resources (personnel and equipment, etc. ) is one of the main concerns about animal epidemic prevention system. This paper proposed a method to classify and divide loci based on a spatial clustering method and a principle of maximum included angles. Firstly, the K- Means clustering analysis method was applied to the foci distribution and realized the classification of loci by intimate or distant relationship. Secondly, based on the principle of maximum angle, determined the boundary line of each classification. By above methods, realized the loci classification division according to the spatial relationship and got divided area, so that epidemic management personnel could get decision support to effectively monitoring and analyzing epidemic spatial distribution model, controlling and preventing the spread of the animal epidemic information.
出处 《计算机科学》 CSCD 北大核心 2013年第06A期50-53,共4页 Computer Science
基金 国家质检总局科技计划项目(2011IK024)资助
关键词 疫情 空间聚类 边界点搜索 分类区域 Epidemics, Spatial clustering, Boundary points search,Classification zone
  • 相关文献

参考文献11

二级参考文献57

共引文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部