期刊文献+

二型模糊系统在音频信号分类中的应用 被引量:2

Type-2 Fuzzy System for Audio Signal Classification
下载PDF
导出
摘要 针对数字音频信号分类问题提出了基于二型模糊集合理论的C均值聚类算法,并在此基础上应用跳跃基因遗传算法对聚类得到的初始模糊模型进行优化,最后采用向量相似性测度准则对优化后的模糊规则集合进行简化,得到最终的模糊分类器模型。与传统的一型模糊集合相比,二型模糊集合可以掌控更多的不确定性信息。基于二型模糊集合理论的C均值聚类算法对样本分布不均匀、结构不规则的样本集的聚类效果更精确。实例仿真结果对比显示,应用二型模糊C均值聚类算法的音频信号分类器比应用一型模糊C均值聚类算法的分类器得到的分类结果更准确。 Type-2 fuzzy C-means clustering algorithm is applied to solve the digital audio signal classification problem, and jumping genes genetic algorithm is used to optimized the initial fuzzy model which is obtained by the clustering algorithm. At last, the optimized fuzzy rule base is simplified by the vector similarity measure, and the fimal fuzzy classifier model is obtained. Compared with conventional type-1 fuzzy sets, type-2 fuzzy sets can handle more uncertain information. Type-2 fuzzy C-means clustering algorithm has more accurate results for sample sets whose samples distribute uneven and structures are irregular. The experiment results illustrate that the audio classifier which is based on the type-2 fuzzy C-means clustering algorithm has more precise results than the classifiers which are based on the type-1 fuzzy C-means clustering algorithm.
作者 生龙 张洪斌
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2013年第3期436-441,共6页 Journal of University of Electronic Science and Technology of China
关键词 聚类算法 数字音频信号 模糊C均值 遗传算法 二型模糊集合 clustering algorithm digital audio signals fuzzy c-means genetic algorithm type-2 fuzzy sets
  • 相关文献

参考文献13

  • 1XING H J, HU B G An adaptive fuzzy C-means clustering-based mixtures of experts model for ulllabeled data classification[J]. Neuroeomputing, 2008(71): 1008- 1021.
  • 2MAULIK U, SAHA I. Automatic fuzzy clustering using modified differential evolution for image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3503-3509.
  • 3HUNG C C, KULKARNI S, KUO B C. A new weighted fuzzy C-means clustering algorithm for remotely sensed image classification[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 543-553.
  • 4SIKKA K, SINHA N, SINGH P K, et al. A fully autolnated algorithm under modified FCM frslnework for impmved brain MR image segmentation[J]. Magnetic Resonance Imazinz. 2009(27): 994-1004.
  • 5张东波,王耀南.FCM聚类算法和粗糙集在医疗图像分割中的应用[J].仪器仪表学报,2006,27(12):1683-1687. 被引量:32
  • 6ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning-l[J]. Information Sciences, 1975(8): 199-249.
  • 7HWANG C, RHEE F C H. Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(1): 107-119.
  • 8SHENG Long, MA Xiao-yu. JGGA-Fuzzy classification of audio signals[C]//2011 4th IEEE International Conference on Computer Science and Information Technology. Chengdu: IEEE, 2011.
  • 9BEZDEK J C, EHRLICH R, FULL W. FCM: the fuzzy C-means clustering algorithm[J]. Computers and Geosciences, 1984, 10(2-3): 191-203.
  • 10MENDEL M J. Uncertain rule-based fuzzy logic systems: Introduction and New Directions[M]. Upper Saddle River, N J: Prentice-Hall, 2001.

二级参考文献9

  • 1陈真诚,张锋,蒋大宗,倪利莉,王红艳.利用多分辨率分析的胸部X线数字图像粗糙集滤波增强[J].中国生物医学工程学报,2004,23(6):486-489. 被引量:7
  • 2SELIM S Z,ISMAIL M A.K-means type alogorithm[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,6(1):81-87.
  • 3BEZDEK J C.Pattern recognition with fuzzy objective function algorithms[M].New York:Plenum Press,1981.
  • 4PAWLAK Z.Rough set theory and its application to data analysis[J].Cybernetics and Systems,1998,29(9):661-688.
  • 5PAL S K,PABITRA M.Multispectral image segmentation using the rough-set-initialized EM algorithm[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2495-2501.
  • 6MOHABEY A,RAY A K.Rough set theory based segmentation of color image[A].Proceedings of IEEE 19th International Meeting of the North American Fuzzy Information Processing Society[C],2000:338-342.
  • 7WOJCIK Z M.Application of rough sets for edge enhancing image filters[A].International Conference on Image Processing[C],1994,Austin,Texas,USA 2:525-529.
  • 8徐立中,王慧斌,杨锦堂.基于粗糙集理论的图像增强方法[J].仪器仪表学报,2000,21(5):514-515. 被引量:21
  • 9董广军,范永弘,罗睿.基于粗糙集的图像智能增强预处理[J].计算机工程,2003,29(13):57-58. 被引量:3

共引文献31

同被引文献25

  • 1张永,吴晓蓓,向峥嵘,胡维礼.基于决策树和遗传算法的模糊分类系统设计[J].东南大学学报(自然科学版),2006,36(S1):23-26. 被引量:2
  • 2张一彬,周杰,边肇祺,张大鹏.一种新的基于分类的音频流分割方法[J].电子学报,2006,34(4):612-617. 被引量:10
  • 3张永,吴晓蓓,向峥嵘,胡维礼.基于多目标进化算法的高维模糊分类系统的设计[J].系统仿真学报,2007,19(1):210-215. 被引量:11
  • 4吕国云,蒋冬梅,蒋晓悦,赵荣椿,侯云舒,孙阿利,H.Sahli,W.Verhelst.基于动态贝叶斯网络的音视频连续语音识别和音素切分[J].计算机应用,2007,27(7):1670-1673. 被引量:2
  • 5Xie Shasha, Evanini K, Zechner K. Exploring content features for auto- mated speech scoring[ J ]. Proceedings of the NAACL-HLT, Montreal, 2012:103 -111.
  • 6Franco H, Neumeyer L, Yoon Kim, et al. Automatic Pronuneiation Sco- ring for Language Instruction [ C ]. IEEE International Conference on A- coustics, Speech, and Signal Processing, 1997,2 : 1471 - 1474.
  • 7Rabiner L, Cheng M, Rosenberg A E, et al. A comparative performance study of several pitch detection algorithms [ J ]. IEEE Transaction on, Acoust, Speech, Signal Processing, 1976, ASSP-24 ( 5 ) :399 - 417.
  • 8ZHENG Shaoqm,JANECEK A,TAN Ying.Enhanced fireworks algorithm[C]//2013 IEEE Congress on Evo- lutionary Computation.Cancun,Mexico:IEEE Press,2013:2069-2077.
  • 9ZHENG Yujun,XU Xinli,LING Haifeng,et al.A hybrid fireworks optimization method with differential evolution operators[J].Neurocomputing,2012,148:75-82.
  • 10SETNES M,BABUSKA R,KAYMAK U,et al.Simi- larity measures in fuzzy rule base simplification[J]. IEEE Transactions on Systems,Man and Cybernetics,1998,28(3):376-386.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部