期刊文献+

应用人工神经网络方法确定基于离散内聚力模型下高钢级管线钢的聚合强度和断裂能(英文)

Application of the ANN to Evaluate Cohesive Strength and Fracture Energy for Toughened High Strength Steel Based on Discrete Cohesive Zone Model
下载PDF
导出
摘要 高钢级管线钢的断面凹凸不平并且生成的裂纹没有尖锐整齐的裂纹尖端存在。因此,通过标准的测试方法无法获得传统的断裂力学参数。文章基于离散内聚力模型和有限元方法,对高钢级管线钢拉伸试样的测试数据进行了分析,并提出了一种通过人工神经网络拟合获得三角形内聚力法则中的聚合强度和断裂能两个参数的方法。结果表明,在离散内聚力模型中代入该参数后,通过仿真得到的载荷-位移曲线与试验获得的结果吻合很好。因此,该论文的研究工作可为基于高钢级管线钢构建的船舶与海洋结构物断裂分析打下良好的基础。 The fractured surface of toughen high strength steel is not fiat and crack front is not straight, ods. In and thus, conventional fracture parameters cannot be obtained through standardized test meth- this paper, discrete cohesive zone model (DCZM) was employed to analyze the fracture test results on toughen high strength steel. The simple triangular cohesive law in conjunction with finite element analysis was adopted. An artificial neural network (ANN) approach is proposed to determine the cohesive strength and fracture energy, which are the fundamental parameters to establish the tri- angle type cohesive law. In engineering sense, the load vs. displacement curves predicted by the DCZM using the determined parameters agree with the test curve quite well. Therefore, this research lays a good foundation for analyzing the fracture of the ship and offshore structure constructed from toughened high strength steels.
出处 《船舶力学》 CSCD 北大核心 2013年第6期672-679,共8页 Journal of Ship Mechanics
关键词 裂纹扩展 聚合强度 断裂能 高钢级管线钢 离散内聚力模型 人工神经网络 crack growth and propagation cohesive strength fracture energy toughened high strength steel discrete cohesive zone model (DCZM) artificial neural network (ANN)
  • 相关文献

参考文献8

  • 1Dugdale D S. Effect of internal stress on elastic stiffness[J]. Journal of the Mechanics and Physics of Solids, 1963, 11(1): 41-47.
  • 2Barenblatt G 1. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[J]. Journal of Applied Mathematics and Mechanics, 1959, 23(3): 622-636.
  • 3Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976,6: 773-781.
  • 4de Borst R. Numerical aspect of cohesive zone models[J]. Engineering Fracture Mechanics, 2003, 70: 1943-1961.
  • 5Xie D, Waas A M. Discrete cohesive zone model for mixed-mode fracture using finite element analysis [J]. Engineering Fracture Mechanics, 2006, 73: 1783-1796.
  • 6Xie D, Salvi A G, Sun C, Waas A M, Caliskan A. Discrete cohesive zone model to simulate static fracture in 2D triaxially braided carbon fiber composite[J]. Journal of Composite Materials, 2006, 40: 2025-2046.
  • 7Salvi A G, Waas A M, Caliskan A. Energy absorption and damage propagation in 2D triaxially braided carbon fiber composites: Effects of in situ matrix properties[J]. Journal of Materials Science, 2008, 43: 5168-5184.
  • 8Chong E K P, Zak S H. An introduction to optimization[M]. 2nd Edition. JohnWiley & Sons, Inc., 2001.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部