期刊文献+

网络大数据:现状与展望 被引量:714

Network Big Data:Present and Future
下载PDF
导出
摘要 网络大数据是指"人、机、物"三元世界在网络空间(Cyberspace)中交互、融合所产生并在互联网上可获得的大数据.网络大数据的规模和复杂度的增长超出了硬件能力增长的摩尔定律,给现有的IT架构以及机器处理和计算能力带来了极大挑战.同时,也为人们深度挖掘和充分利用网络大数据的大价值带来了巨大机遇.因此,迫切需要探讨大数据的科学问题,发现网络大数据的共性规律,研究网络大数据定性、定量分析的基础理论与基本方法.文中分析了网络大数据的复杂性、不确定性和涌现性,总结了网络空间感知与数据表示、网络大数据存储与管理体系、网络大数据挖掘和社会计算以及网络数据平台系统与应用等方面的主要问题与研究现状,并对大数据科学、数据计算需要的新模式与新范式、新型的IT基础架构和数据的安全与隐私等方面的发展趋势进行了展望. Network big data refer to the massive data generated by interaction and fusion of the ternary human-machine-thing universe in the Cyberspace and available on the Internet. The increase of their scale and complexity exceeds that of the capacity of hardware characterized by the Moore law, which brings grand challenges to the architecture and the processing and computing capacity of the contemporary IT systems, meanwhile presents unprecedented opportunities on deeply mining and taking full advantage of the big value of network big data. Therefore, it is pressing to investigate the disciplinary issues and discover the common laws of network big data, and further study the fundamental theory and basic approach to qualitatively or quantitatively dealing with network big data. This paper analyzes the challenges caused by the complexity, uncertainty and emergence of network big data, and summarizes major issues and research status of the awareness, representation, storage, management, mining, and social computing of network big data, as well as network data platforms and applications. It also looks ahead to the development trends of big data science, new modes and paradigm of data computing, new IT infrastructures, and data security and privacy, etc.
出处 《计算机学报》 EI CSCD 北大核心 2013年第6期1125-1138,共14页 Chinese Journal of Computers
基金 国家自然基金重点项目"在线社会关系网络挖掘与分析"(61232010) "支持舆情监控的Web搜索与挖掘的新理论和新方法"(60933005) 国家自然基金面上项目"基于随机博弈网的网络用户信息行为模型及演化性分析"(61173008) 国家"九七三"重点基础研究发展规划项目课题"面向公共安全的社会感知数据处理"(2012CB316303) 国家自然科学基金青年项目"通信网络中可变服务容量调度系统的性能建模 分析与优化"(61100175)资助
关键词 大数据 网络大数据 网络空间感知 大数据存储 数据挖掘 社会计算 network big data cyberspace awareness storage of big data data mining social computing
  • 相关文献

参考文献68

  • 1李国杰,程学旗.大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J].中国科学院院刊,2012,27(6):647-657. 被引量:1606
  • 2Big data. Nature, 2008, 455(7209): 1-136.
  • 3Dealing with data. Science,2011,331(6018): 639-806.
  • 4Holland J. Emergence: From Chaos to Order. RedwoodCity,California: Addison-Wesley? 1997.
  • 5Anthony J G Hey. The Fourth Paradigm: Data-intensiveScientific Discovery. Microsoft Research, 2009.
  • 6Phan X H, Nguyen L M,Horiguchi S. Learning to classifyshort and sparse text Web with hidden topics from large-scale data collections//Proceedings of the 17th InternationalConference on World Wide Web. Beijing, China,2008:91-100.
  • 7Sahami M, Heilman T D. A web-based kernel function formeasuring the similarity of short text snippets//Proceedingsof the 15th International Conference on World Wide Web.Edinburgh, Scotland, 2006: 377-386.
  • 8Efron M, Organisciak P,Fenlon K. Improving retrieval ofshort texts through document expansion//Proceedings of the35th International ACM SIGIR Conference on Research andDevelopment in Information Retrieval. Portland, OR, USA,2012: 911-920.
  • 9Hong L,Ahmed A, Gurumurthy S,Smola A J, Tsioutsiou-liklis K. Discovering geographical topics in the twitterstream//Proceedings of the 21st International Conference onWorld Wide Web(WWW 2012). Lyon, France, 2012:769-778.
  • 10Pozdnoukhov A,Kaiser C. Space-time dynamics of topics instreaming text//Proceedings of the 3rd ACM SIGSPATIALInternational Workshop on Location-Based Social Networks.Chicago-IL,USA, 2011: 1-8.

二级参考文献292

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2谷峪,于戈,张天成.RFID复杂事件处理技术[J].计算机科学与探索,2007,1(3):255-267. 被引量:54
  • 3Deshpande A, Guestrin C, Madden S, Hellerstein J M, Hong W. Model-driven data acquisition in sensor networks// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, 2004:588-599
  • 4Madhavan J, Cohen S, Xin D, Halevy A, Jeffery S, Ko D, Yu C. Web-scale data integration: You can afford to pay as you go//Proceedings of the 33rd Biennial Conference on Innovative Data Systems Research. Asilomar, 2007:342-350
  • 5Liu Ling. From data privacy to location privacy: Models and algorithms (tutorial)//Proceedings of the 33rd International Conference on Very Large Data bases. Vienna, 2007: 1429- 1430
  • 6Samarati P, Sweeney L. Generalizing data to provide anonymity when disclosing information (abstract)//Proeeedings of the 17th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Seattle, 1998:188
  • 7Cavallo R, Pittarelli M. The theory of probabilistic databases//Proceedings of the 13th International Conference on Very Large Data Bases. Brighton, 1987:71-81
  • 8Barbara D, Garcia-Molina H, Porter D. The management of probabilistic data. IEEE Transactions on Knowledge and Data Engineering, 1992, 4(5): 487-502
  • 9Fuhr N, Rolleke T. A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Transactions on Information Systems, 1997, 15(1): 32-66
  • 10Zimanyi E. Query evaluation in probabilistic databases. Theoretical Computer Science, 1997, 171(1-2): 179-219

共引文献2205

同被引文献5487

引证文献714

二级引证文献7277

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部