期刊文献+

求解对称特征值问题的修正Jacobi共轭预处理梯度法(英文) 被引量:1

Modified Jacobi-conjugate preconditioned gradient method for symmetric eigenvalue problems
下载PDF
导出
摘要 对于对称特征值问题,基于对原有复杂Jacobi共轭条件的简化,提出了一种修正的Jacobi共轭预处理梯度法.在理论上证明了在求解单个端部特征值时修正方法与原始方法有着渐近等价的共轭性.而在求解多个端部特征值时,修正方法与原始方法展现出极为相似的收敛性,但其矩阵乘积运算更少,因而计算代价也更小.数值算例进一步验证了修正方法的有效性和优越性. For the symmetric eigenvalue problems, a modified Jacobi-conjugate preconditioned gradient method based on a simplification of the original complicated Jacobi-conjugation condition is proposed. Theoretical analysis shows that the modified method employs asymptotically equivalent conjugation to that of the original one for the single-vector iteration when one extreme eigenpair is computed. While for the block iteration to detect several extreme eigenpairs, the modified method exhibits remarkably similar convergence to that of the original one, but with much cheaper computational expenses due to less matrix multiplications. Numerical examples further demonstrate the effectiveness and superiority of the modified method.
作者 菅帅
出处 《应用数学与计算数学学报》 2013年第2期260-288,共29页 Communication on Applied Mathematics and Computation
关键词 Jacobi校正算子 修正的共轭条件 Rayleigh-Ritz过程 块共轭梯度 Jacobi correction operator, modified conjugation condition, Rayleigh-Ritz procedure, block conjugate gradient
  • 相关文献

参考文献21

  • 1Edelman A, Arias T A, Smith S T. The geometry of algorithms with orthogonality constraints [J]. SIAM J Matrix Anal Appl, 1998, 20: 303-353.
  • 2Feng Y T, Owen D R. Conjugate gradient methods for solving the smallest eigenpair of large symmetric eigenvalue problems [J]. Internat J Numer Methods Engrg, 1996, 39: 2209-2229.
  • 3Ovtchinnikov E E. Computing several eigenpairs of Hermitian problems by conjugate gradient iterations [J]. J Comput Phys, 2008, 227: 9477-9497.
  • 4Yang X, Sarkar T K, Arvas E. A survey of conjugate gradient algorithms for solution of extreme eigen-problems of a symmetric matrix [J]. IEEE Trans Acoust Speech Signal Process, 1989, 37: 1550-1556.
  • 5Bergamaschi L, Gambolati G, Pini G. Asymptotic convergence of conjugate gradient methods for the partial symmetric eigenproblem [J]. Numer Linear Algebra Appl, 1997, 4: 69-84.
  • 6Ovtchinnikov E E. Jacobi correction equation, line search, and conjugate gradients in Her- mitian eigenvalue computation I: computing an extreme eigenvalue [J]. SIAM J Numer Anal, 2008, 46: 2567-2592.
  • 7Ovtchinnikov E E. Jacobi correction equation, line search, and conjugate gradients in Her- mitian eigenvalue computation II: computing several extreme eigenva!ues [J]. SIAM J Numer Anal, 2008, 46: 2593-2619.
  • 8Yang H. Conjugate gradient methods for the Rayleigh quotient minimization of generalized eigenvalue problems [J]. Computing, 1993, 51: 79-94.
  • 9Knyaev A V. A preconditioned conjugate gradient method for eigenvalue problems and its implementation in a subspace [J]. Internat Ser Numer Math, 1991, 96: 143-154.
  • 10Takahashi I. A note on the conjugate gradient method [J]. Information Processing in Japan, 1965, 5: 45-49.

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部