摘要
Carbonate shells have an astonishing ability in the removal of Cd^2+ in a short time period with emphasis on being a low cost adsorbent. In the present study, the sorption capacity of carbonate shells was studied for Cd^2+ in batch experiments. The influence of different carbonate shell sizes and physico-chemical factors were evaluated and the results were analyzed for its correlation matrices by using Predictive Analytics Software (PASW). The miner- alogy state of aqueous solution regarding the saturation index was simulated using PHREEQC to identify the Cd^2+ uptake mechanism. The Cd uptake rates were calculated as well as Ca^2+, HCO3- concentration, pH, ambient humidity and temperature were measured. Cd2+ removal of 91.52% was achieved after 5 h adsorption. The adsorption efficiencies were significantly influenced by pH as they increased with the increase of pH from acidic solution (5.50±0.02) to slightly alkaline (7.60±0.05). In addition, the mineralogy state of aqueous solution calculated from PHREEQC confirmed that the increment of Ca^2+ and HCO3- concentrations in solution was attributed to the dissolution of carbonate shells. Moreover, the ion exchange adsorption mechanism of Cd^2+ toward Ca^2+ was identified as the process involved in Cd^2+ uptake.
Carbonate shells have an astonishing ability in the removal of Cd^2+ in a short time period with emphasis on being a low cost adsorbent. In the present study, the sorption capacity of carbonate shells was studied for Cd^2+ in batch experiments. The influence of different carbonate shell sizes and physico-chemical factors were evaluated and the results were analyzed for its correlation matrices by using Predictive Analytics Software (PASW). The miner- alogy state of aqueous solution regarding the saturation index was simulated using PHREEQC to identify the Cd^2+ uptake mechanism. The Cd uptake rates were calculated as well as Ca^2+, HCO3- concentration, pH, ambient humidity and temperature were measured. Cd2+ removal of 91.52% was achieved after 5 h adsorption. The adsorption efficiencies were significantly influenced by pH as they increased with the increase of pH from acidic solution (5.50±0.02) to slightly alkaline (7.60±0.05). In addition, the mineralogy state of aqueous solution calculated from PHREEQC confirmed that the increment of Ca^2+ and HCO3- concentrations in solution was attributed to the dissolution of carbonate shells. Moreover, the ion exchange adsorption mechanism of Cd^2+ toward Ca^2+ was identified as the process involved in Cd^2+ uptake.