期刊文献+

基于多分类器的迁移Bagging习题推荐 被引量:6

Online transfer-Bagging question recommendation based on hybrid classifiers
下载PDF
导出
摘要 针对协同过滤(CF)推荐方法用户的历史信息不足等问题,提出基于多分类器的迁移Bagging习题推荐算法。主要思路是把推荐问题投入迁移学习框架,将待推荐习题的用户作为目标域,从中搜索相似历史信息的用户作为辅助域,帮助训练目标域以得到更准确的分类结果。实验结果表明,所提方法在习题推荐库及公开数据上,比协同过滤算法性能提高了10%~20%;比单分类器Bagging迁移算法性能提升了5%~10%。该方法在一定程度上解决了习题推荐系统中存在的冷启动和数据稀疏问题,也可推广到商品推荐等电子商务平台。 Traditional Collaborative Filter (CF) often suffers from the shortage of historic information. A transfer-Bagging algorithm based on hybrid classifiers was proposed for question recommendation. The main idea was that the recommendation and prediction problem were cast into the framework of transfer learning, then the users' demand for recommend questions were treated as target domain, while similar users who had applicable historic information were employed as auxiliary domain to help training target classifiers. The experimental results on both question recommendation platform and popular open datasets show that the accuracy of the proposed algorithm is 10%-20% higher than CF, and 5%-10% higher than single Bagging algorithm. The method solves cold start-up and sparse data problem in question recommendation field, and can be generalized into production recommendation on E-commerce platform.
出处 《计算机应用》 CSCD 北大核心 2013年第7期1950-1954,共5页 journal of Computer Applications
基金 国家自然科学基金青年基金资助项目(61202184) 西北大学教改项目(ZC12020 JX12028) 校级创新基金资助项目(2011059)
关键词 迁移学习 BAGGING 协同过滤 推荐系统 计算机辅助教学 transfer learning Bagging Collaborative Filtering (CF) recommendation system Computer Assisted Instruction (CAI)
  • 相关文献

参考文献20

  • 1Online Exam System [ EB/OL]. [ 2013 - 01 - 05]. http://www. law. du. edu/forms/registrar/online-exams/.
  • 2张华青,王红,滕兆明,马晓慧.多维加权社会网络中的个性化推荐算法[J].计算机应用,2011,31(9):2408-2411. 被引量:8
  • 3RESNICK P, IACOOU N, SUCHA M, et al. GroupLens: an open architecture for collaborative filtering of netnews [ C]//Proceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. New York: ACM Press, 1994:175-186.
  • 4DESHPANDE M, KARYPIS G. Item-based top-N recommendation algorithms [ J]. ACM Transactions on Information Systems, 2004, 22(1) : 143 - 177.
  • 5WANG J, SARWAR B. Utilizing related products for post-purchase recommendation in E-commerce [ C] // Proceedings of the 5th ACM Conference on Recommender Systems. New York: ACM Press, 2011:329-332.
  • 6刘建国,周涛,汪秉宏.个性化推荐系统的研究进展[J].自然科学进展,2009,19(1):1-15. 被引量:435
  • 7唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 8LINDEN G, SMITH B. Amazon. com recommendations: item-to-i- tem collaborative filtering [ J]. IEEE Internet Computing, 2003, 7 (1): 76-80.
  • 9HSU M-H. A personalized english learning recommender system for ESL students [ J]. Expert Systems with Applications, 2008, 34(1) : 683 - 688.
  • 10I)EGEMMIS M, LOPS P, SEMERARO G. A content-collaborative recommender that exploits WordNet-based user profiles for neigh- borhood formation [ J]. User Modeling and User-Adapted Interac- tion, 2007, 17(3): 217-255.

二级参考文献121

  • 1Resnick P, lakovou N, Sushak M, et al. GroupLens: An open architecture for collaborative filtering of netnews. Proc 1994 Computer Supported Cooperative Work Conf, Chapel Hill, 1994: 175-186
  • 2Hill W, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use. Proc Conf Human Factors in Computing Systems. Denver, 1995:194 -201
  • 3梅田望夫.网络巨变元年-你必须参加的大未来.先觉:先觉出版社,2006
  • 4Adomavicius G, Tuzhilin A. Expert-driven validation of Rule Based User Models in personalization applications. Data Mining and Knowledge Discovery, 2001, 5(1-2):33-58
  • 5Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the art and possible extensions. IEEE Trans on Knowledge and Data Engineering, 2005, 17(6): 734-749
  • 6Rich E. User modeling via stereotypes. Cognitive Science, 1979, 3(4) : 329-354
  • 7Goldberg D, Nichols D, Oki BM, et al. Using collaborative filtering to weave an information tapestry. Comm ACM, 1992, 35(12):61-70
  • 8Konstan JA, Miller BN, Maltz D, el al. GroupLens: Applying collaborative filtering to usenet news. Comm ACM, 1997, 40(3) : 77-87
  • 9Shardanand U, Maes P. Social information filtering: Algorithms for automating ‘Word of Mouth'. Proe Conf Human Factors in Computing Systems Denver, 1995: 210-217
  • 10Linden G, Smith B, York J. Amazon. corn recommendations: hem-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76-80

共引文献535

同被引文献48

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部