期刊文献+

基于改进贝叶斯方法的轨迹预测算法研究 被引量:16

Prediction of trajectory based on modified Bayesian inference
下载PDF
导出
摘要 针对传统轨迹预测方法在历史轨迹数目有限时,预测准确度较低的问题,提出一种改进的贝叶斯推理(MBI)方法,MBI构建了马尔可夫模型来量化相邻位置的相关性,并通过对历史轨迹进行分解来获得更准确的马尔可夫模型,最后得到改进的贝叶斯推理公式。实验结果表明,MBI方法比现有方法的预测速度快2到3倍,并且有较高的准确度和稳定性。MBI方法充分利用现有轨迹信息,不仅提高了查询效率,还保证了较高的预测精度。 The existing algorithms for trajectory prediction have very low prediction accuracy when there are a limited number of available trajectories. To address this problem, the Modified Bayesian Inference (MBI) approach was proposed, which constructed the Markov model to quantify the correlation between adjacent locations. MBI decomposed historical trajectories into sub-trajectories to get more precise Markov model and the probability formula of Bayesian inference was obtained. The experimental results based on real datasets show that MBI approach is two to three times faster than the existing algorithm, and it has higher prediction accuracy and stability. MBI makes full use of the available trajectories and improves the efficiency and accuracy for the prediction of trajectory.
出处 《计算机应用》 CSCD 北大核心 2013年第7期1960-1963,共4页 journal of Computer Applications
基金 国家重大科技专项(2011ZX02507-006)
关键词 轨迹预测 马尔可夫模型 贝叶斯推理 trajectory prediction Markov model Bayesian inference
  • 相关文献

参考文献12

  • 1乔少杰,彭京,李天瑞,朱焱,刘良旭.基于CTBN的移动对象不确定轨迹预测算法[J].电子科技大学学报,2012,41(5):759-763. 被引量:9
  • 2郭黎敏,丁治明,胡泽林,陈超.基于路网的不确定性轨迹预测[J].计算机研究与发展,2010,47(1):104-112. 被引量:15
  • 3赵越,刘衍珩,余雪岗,魏达,单长伟,赵洋.基于模式挖掘与匹配的移动轨迹预测方法[J].吉林大学学报(工学版),2008,38(5):1125-1130. 被引量:7
  • 4WEI L Y, ZHENG Y, PENG W. Constructing popular mutes from uncertain trajectories [ C]/! Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2012:195 -203.
  • 5MARMASSE N, SCHMANDT C. A user-centered location model [ J]. Personal and Ubiquitous Computing, 2002, 6(5) : 318 - 321.
  • 6ASHBROOK D, STARNER T. Using GPS to learn significant loca- tions and predict movement across multiple users [ J]. Personal U- biquitous Computing, 2003, 7(5): 275-286.
  • 7TIESYTE D, JENSEN C S. Similarity-based prediction of travel times for vehicles traveling on known routes [ C]/! Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM Press, 2005:1 -10.
  • 8ZIEBART B D, MAAS A L, DEY A K, et al. Navigate like a cab- bie: probabilistic reasoning from observed context-aware behavior [ C]//Proceedings of the 10th International Conference on Ubiqui- tous Computing. New York: ACM Press, 2008: 322- 331.
  • 9HORVITZ E, KRUMM J. Some help on the way: opportunistic rou- ting under uncertainty [ C]// Proceedings of the 14th International Conference on Ubiquitous Computing. New York: ACM Press, 2012:371-380.
  • 10彭曲,丁治明,郭黎敏.基于马尔可夫链的轨迹预测[J].计算机科学,2010,37(8):189-193. 被引量:38

二级参考文献59

  • 1丁治明 郭黎敏 李肖楠 等.基于对象关系的位置相关数据库模型及其移动持续查询处理策略.计算机研究与发展,2008,45:88-94.
  • 2Saltenis S, Jensen C S, Leutenegger S T, et al. Indexing the positions of continuously moving objects [C] //Proc of the 2000 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2000:331-342.
  • 3Tao Y, Faloutsos C, Papadias D, et al. Predietion and indexing of moving objects with unknown motion patterns [C] //Proc of the 2004 ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2004:611-622.
  • 4Aggareal C C, Agrawal D. On nearest neighbor indexing of nonlinear trajectories [C]//Proe of the 22nd ACM SIGMODSIGACT-SIGART Syrup on Principles of Database Systems. New York: ACM, 2003:252-259.
  • 5Jeung H, Liu Q, Shen H T, et al. A hybrid prediction model for moving objects [C] //Proc of the 24th Int Conf on Data Engineering. Piscataway, NJ: IEEE, 2008: 70-79.
  • 6Mamoulis N, Cao H, Kollios G, et al. Mining, indexing, and querying historical spatiotemporal data [C] //Proc of the 10th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2004:236-245.
  • 7Kim S -W, Won J -I, Kim J -D, et al. Path prediction of moving objects on road networks through analyzing past trajectories [C] //Proc of the 11th Int Conf on Knowledge- Based Intelligent Information and Engineering Systems. Berlin: Springer, 2007:379-389.
  • 8Ding Z, Guting R H. Managing moving objects on dynamic transportation networks [C]//Proc of the 16th Int Conf on Scientific and Statistical Database Management. Washington: IEEE Computer Society, 2004:287-296.
  • 9Ding Z, Zhou X. Location update strategies for network- constrained moving objects [C]//Proc of the 13th Int Conf on Database Systems for Advanced Applications. Berlin: Springer, 2008:644-652.
  • 10Karimi H A, Liu X. A predictive location model for locationbased services [C] //Proc of the 11th ACM Int Symp on Advances in Geographic Information Systems. New York: ACM, 2003:126-133.

共引文献61

同被引文献121

引证文献16

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部