期刊文献+

镍钛形状记忆合金管材的研究进展 被引量:7

Recent research of nickel-titanium shape memory alloy tube
下载PDF
导出
摘要 镍钛形状记忆合金管材因为具有良好的形状记忆效应和超弹性而在工程领域得到了广泛的应用.文章总结了国内外众多学者的研究成果,系统介绍了镍钛形状记忆合金管材的加载力学行为、塑性成形方法和典型工程应用.镍钛形状记忆合金管材在单向拉伸加载、单向扭转加载以及拉伸扭转复合加载方式下表现出了不同的力学行为.奥氏体镍钛形状记忆合金管材在单向拉伸加载下,可以观察到明显的应力诱发马氏体螺旋带.镍钛形状记忆合金管材的塑性成形方法主要有拉拔、挤压和旋压,拉拔工艺仍是目前生产镍钛形状记忆合金管材的主要手段.镍钛形状记忆合金管材的典型工程应用主要有生物医用支架和管接头.镍钛形状记忆合金管材在科学研究和工程应用方面仍具有广阔的发展空间. Nickel-Titanium shape memory alloy tube is widely applied in the engineering fields because of excellent shape memory effect and perfect superelasticity.In this paper,according to the scientific achievements of domestic and overseas researchers,Nickel-Titanium shape memory alloy tube is systematically introduced in terms of mechanical behavior,plastic deformation and typical engineering application.Nickel-Titanium shape memory alloy tube exhibits different mechanical behaviors in the cases of uniaxial tension loading,uniaxial torsion loading as well as combined tension and torsion loading.Stress-induced martensitic bands are observed on austenitic Nickel-Titanium shape memory alloy tube which is subjected to uniaxial tension loading.Nickel-Titanium shape memory alloy tube is mainly manufactured by means of plastic deformation methods,such as drawing,extrusion and spinning.Drawing remains the main approach to producing Nickel-Titanium shape memory alloy tube.Nickel-Titanium shape memory alloy tube is typically applied to biomedical stent and pipe couplings in the engineering fields.Nickel-Titanium shape memory alloy tube remains a promising candidate for scientific research and engineering application.
出处 《应用科技》 CAS 2013年第3期67-74,共8页 Applied Science and Technology
基金 国家自然科学基金资助项目(51071056)
关键词 镍钛合金管材 形状记忆合金 力学行为 塑性成形 生物医学支架 研究进展 NiTi alloy tube shape memory alloy mechanical behavior plastic deformation biomedical stent recent research
  • 相关文献

参考文献30

  • 1OTUKA K, REN X. Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Progress in Materials Science, 2005, 50(5): 511-678.
  • 2ROBERTSON S W, RITCHIE R O. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects[J]. Biomaterials, 2007,28(4): 700-709.
  • 3FENG P, SUN Q P. In situ profilometry for non-uniform swain field measurement of NiTi shape memory alloy microtubing under complex stress states[J]. Smart Materials and Structures, 2007, 16(1): S179-S186.
  • 4LI Z Q. Simulation of initial formation and growth of martensitic band in NiTi micro-tube under tension[J]. International Journal of Solids and Structures, 2010, 47(1): 113-125.
  • 5江树勇,郑玉峰,张艳秋,赵立红.生物医用镍钛记忆合金管材塑性成形研究进展[J].锻压技术,2009,34(3):1-5. 被引量:5
  • 6WU M H. Fabrication of nitinol materials and components[J]. Material Science Forum, 2001, 394/395: 285-292.
  • 7TORO A, ZHOU F, WU M H, et al. Characterization of non-metallic inclusions in superelastic NiTi tubes[J]. Joumal of Materials Engineering and Performance, 2009, 18(5/6): 448-458.
  • 8LI Z Q, SUN Q P. The initiation and growth of macroscopic martensite band in nano-grained NiTi microtube under tension[J]. International Journal of Plasticity, 2002, 18(11): 1481-1498.
  • 9SUN Q P, LI Z Q. Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension-torsion-from localization to homogeneous deformation[J]. International Journal of Solids and Structures, 2002, 39(13/14): 3797-3809.
  • 10NG K L, SUN Q P. Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes[J]. Mechanics of Materials, 2006, 38(1/2): 41-56.

二级参考文献55

  • 1MaoshengLI,YongnianYAN,ShihongZHANG,DachangKANG.Selection of Parameters in Ball-Spinning[J].Journal of Materials Science & Technology,2004,20(6):782-787. 被引量:1
  • 2李茂盛,张士宏,康达昌,颜永年.滚珠旋压工艺的滚珠直径选择[J].材料科学与工艺,2005,13(6):594-597. 被引量:8
  • 3胡捷,刘力.钛镍形状记忆合金毛细管加工工艺研究[J].新技术新工艺,2006(6):51-52. 被引量:6
  • 4王忠堂,王淼,王本贤,张士宏,王冬梅.滚珠旋压工艺参数对薄壁筒形件旋压变形的影响[J].热加工工艺,2007,36(1):47-49. 被引量:10
  • 5Kazuhiro Otsuka, Ren Xiaobing. Recent development in the research of shape memory alloys [J]. Intermetallics, 1999, 7 (5): 511- 528.
  • 6Mitsuo Niinomi. Recent research and development in titanium alloys for biomedical applications and healtheare goods[J]. Science and Technology of Advanced Materials, 2003, 4 (5) : 445 - 454.
  • 7Scott W Robertson, Robert O Ritchie. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic nitinol tube for endovascular stents: a basis for defining the effect of crack-like defects [J]. Biamaterials, 2007, 28 (4): 700- 709.
  • 8Ng K L, Sun Q P. Stress-induced phase transformation and detwinning in NiTi polycrystalline shape memory alloy tubes [J]. Mechanics of Materials, 2006, 38 (1-2):41-56.
  • 9Sun Qingping, Li Zhiqi. Phase transformation in superelastic NiTi polycrystalline micro-tubes under tension and torsion from localization to homogeneous deformation [J]. International Journal of Solids and Structures, 2002, 39 (13 - 14): 3797 - 3809.
  • 10Feng P, Sun Q P. Experimental investigation of macroscopic domain formation and evolution in polycrystalline NiTi microtubing under mechanical force [J]. Journal of the Mechanical and Physics of Solids, 2006, 54 (8) : 1568- 1603.

共引文献8

同被引文献42

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部