期刊文献+

流体力学拉氏程序收敛性及数值计算不确定度初探 被引量:6

Asymptotic Convergence Analysis and Quantification of Uncertainty in Lagrangian Computations
下载PDF
导出
摘要 将欧氏(Eulerian)数值模拟不确定度分析的基本概念和方法引进拉氏(Lagrangian)计算中,包括渐近收敛阶、渐近收敛域、网格收敛指标(Grid convergence index,GCI)等.给出GCI方法刻画数值计算不确定度的具体步骤.并应用于N-R格式,验证了方法的有效性. We introduce asymptotic order of convergence,asymptotic range of convergence and concepts under behavior of Lagrangian computations.We also introduce grid convergence index to Lagrangian computation,and give a program using GCI method.These concepts and methods are used to measure computed values away from numerical asymptotic values.
出处 《计算物理》 CSCD 北大核心 2013年第3期346-352,共7页 Chinese Journal of Computational Physics
基金 国家自然科学基金(11072039) 中物院联合基金(11076015) 中物院科学基金(2011B0202043)资助项目
关键词 流体力学拉氏计算 渐近收敛性分析 网格收敛指标 hydrodynamics code asymptotic convergence analysis grid convergence index.
  • 相关文献

参考文献9

  • 1Roache P L. Quantification of uncertainty in computational fluid dynamics [ J]. Annual Review of Fluid Mechanics, 1997,29: 123 - 160.
  • 2Oberkampf W L, Roy C J. Verification and validation in scientific computing [ M]. New York: Cambridge University Press, 2010.
  • 3Ghosh K, Menon S V G. Fully implicit 1D radiation hydrodynamics: Validation and verification [ J]. Journal of Computational Physics, 2010,229:7488 - 7502.
  • 4Kamm J R, Rider W J, Brock J S. Consistent metrics for code verification [ R]. Los Alamos National Laboratory, LA-UR- 02 - 3794, 2004.
  • 5Celik I B, Roache U, Freitas P J, Coleman C J, Raad P E. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications [J]. Journal of Fluid Engineering, 2008,130: 078001.
  • 6张涵信,查俊.关于CFD验证确认中的不确定度和真值估算[J].空气动力学学报,2010,28(1):39-45. 被引量:27
  • 7邓小刚,宗文刚,张来平,高树椿,李超.计算流体力学中的验证与确认[J].力学进展,2007,37(2):279-288. 被引量:68
  • 8王瑞利,林忠,袁国兴.科学计算程序的验证和确认[J].北京理工大学学报,2010,30(3):353-356. 被引量:24
  • 9陈坚强,张益荣.基于Richardson插值法的CFD验证和确认方法的研究[J].空气动力学学报,2012,30(2):176-183. 被引量:21

二级参考文献70

  • 1ROACHE P J. Verification of codes and calculations [J]. AIAA Journal, 1998, 36(5) :696-702.
  • 2OBERKAMPF W L, BLOTTNER F G. Issues in computational fluid dynamics code verification and validation[J]. AIAA Journal, 1998, 36:687-695.
  • 3ROACHE P J. Quantification of uncertainty in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 1997, 29: 123-160.
  • 4WALTERS R W, HUYSE L. Uncertainty analysis for fluid mechanics with applications[R]. NASA/CR-2002- 211449, ICASE Report No. 2002-1, 2002.
  • 5PUTKO M M, NEWMAN P A, TAYLOR A C, GREEN L L. Approach for uncertainty propagation and robust design in CFD using sensitivity derivatives [R]. AIAA Paper, 2001:2001-2558.
  • 6MATHELIN L, HUSSAINI M Y, et al. Uncertainty propagation for turbulent, compressible flow in a quasi- 1D nozzle using stochastic methods [A]. 16^th AIAA Computational Fluid Dynamics Conference[C]. Orlando, Florida, AIAA, 2003..2003-4240.
  • 7LUCOR D, XIU D, et al. Predictability and uncertainty in CFD[J]. Int. J. Numer. Meth. Fluids, 2003, 43 (5) : 483-505.
  • 8OBERKAMPF W L, TRUCANO T G. Verification and validation in computational fluid dynamics [J ]. Prog. Aero. Sci. , 2002, 38:209-272.
  • 9LUCKRING J M, HEMSCH M J, MORRISON J H. Uncertainty in computational aerodynamics[R]. AIAA- 2003-0409, 2003.
  • 10RAYMOND R, et al. The importance of uncertainty estimation in computational fluid dynamics[R]. AIAA- 2003-0406, 2003.

共引文献101

同被引文献55

  • 1刘全,王瑞利,林忠.非嵌入式多项式混沌方法在拉氏计算中的应用[J].固体力学学报,2013,34(S1):224-233. 被引量:12
  • 2王瑞利,林忠,倪国喜.基于任意多边形拉氏网格的有限体积方法研究及应用[J].数值计算与计算机应用,2006,27(1):31-38. 被引量:12
  • 3邓小刚,宗文刚,张来平,高树椿,李超.计算流体力学中的验证与确认[J].力学进展,2007,37(2):279-288. 被引量:68
  • 4李大潜.物理学与偏微分方程[M].上册.北京:高等教育出版社,1997.
  • 5黄祖洽.核反应动力学基础[M].北京:北京大学出版社,2007.
  • 6Oberkampe W L, Roy C J. Verifacation and validation in scientific computing[M]. Cambridge University Press, 2010.
  • 7王瑞利.复杂工程建模与模拟的验证与确认研究进展[C].//计算机辅助工程及其理论研讨会,江苏如东,2013.
  • 8Salari K,Knupp P. Code verification by the method of manufactued solutions[C]. //Sandia National Laboratores, SAND200-1444, 2000.
  • 9Bluman G W, Anco S C. Symmetry and integration methods for differential equations[M]. Springer Verlag, New York Inc,2002.
  • 10Roy A A. Solutions of'the Noh problem for various equations of state using Lie group[J]. Laser and Particle, 2000,18~93-100.

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部