期刊文献+

基于小波包算法的压缩传感SAR成像方法 被引量:1

A Compressive Sensing SAR Imaging Approach Based on Wavelet Package Algorithm
下载PDF
导出
摘要 压缩传感SAR成像能够大量减小采样率和数据量,但只对稀疏场景有效。该文提出基于小波包训练稀疏表示基的压缩传感SAR成像方法。该方法通过对同类型的SAR图像进行小波包训练,在小波包库中选择能够稀疏表示该类SAR场景的稀疏表示基,并通过求解1l范数最小化问题重构SAR场景反射系数。文中提出的方法在严重降采样下仍能够实现无模糊的SAR成像,仿真数据成像结果表明该文方法具有较好的效果。 Compressive sensing SAR imaging can significantly reduce the sampling rate and the amount of data required, but it is essential only in the case where the reflection coefficients of a SAR scene are sparse. This paper proposes a compressive sensing SAR imaging method based on wavelet packet sparse representation. The wavelet packet algorithm is used to choose the most sparse representation of the SAR scene by training the same type of SAR images. By solving for the minimum 11 norm optimization, the SAR scene reflection coefficients can be reconstructed. Unambiguous SAR images can be produced with the proposed method, even with fewer samples. SAR data simulation experiments demonstrate the efficiency of the proposed method.
作者 时燕 陈迪荣
出处 《雷达学报(中英文)》 CSCD 2013年第2期218-225,共8页 Journal of Radars
基金 国家自然科学基金(11171014) 国家973计划项目(2010CB731900)资助课题
关键词 压缩传感 SAR成像 小波包 稀疏表示 稀疏度 Compressive sensing SAR imaging Wavelet packet Sparse representation Sparsity
  • 相关文献

参考文献10

  • 1Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 2Candes E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489 509.
  • 3Candehs E. Compressive sampling[C]. In: Proceedings of International Congress of Mathematicians, Zurieh, Switzerland European Mathematical Society Publishing House, 2006: 1433-1452.
  • 4Candes E and Tao T. Near optimal signal recovery from random projections: universal encoding strategies? [J] . IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
  • 5Cand~s E and Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 6Baraniukc Richard C and Steeghs Philippe. Compressive radar imaging[C]. IEEE Radar Conference, Waltham, MA, April 17 20, 2007:128-133.
  • 7王伟伟,廖桂生,吴孙勇,朱圣棋.基于小波稀疏表示的压缩感知SAR成像算法研究[J].电子与信息学报,2011,33(6):1440-1446. 被引量:15
  • 8Ian G Cmnming,Frank H Wong,洪文,et al.合成孔径雷达成像算法与实现[M].北京:电子工业出版社,2007:154-169.
  • 9Lorne Applebaum, Stephen D Howard, Stephen Searle, et al.. Chirp sensing codes: (teterministic compressed sensing measurements for fast, recovery[J]. Applied and ComputationalHarmonic Analysis, 2009, 26(2): 283-290.
  • 10Tropp J, Wakin M, Duarte M, et al.. Random filters for compressive sampling and reconstruction[C]. Proc. IEEE ICASSP, 2005.

二级参考文献14

  • 1Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 2Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 3Candes E J and Wakin M B. An introduction to compressive sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30.
  • 4Zhang Lei, Xing Meng-dao, and Qiu Cheng-wei, et al.. Achieving higher resolution ISAR imaging with limited pulses via compressed sampling [J]. IEEE Geoscienee and Remote Sensing Letters, 2009, 6(3): 567-571.
  • 5Huang Q, Qu L L, Wu B H, and Fang G Y. UWB through-wall imaging based on compressive sensing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3) 1408-1415.
  • 6Bhattacharya S, Blumensath T, Mulgrew B, and Davies M.Fast encoding of synthetic aperture radar raw data using compressed sensing[C]. IEEE Workshop on Statistical Signal Processing, Madison, USA, Aug. 2007: 448-452.
  • 7Parel V M, Easley G R, Healy D M Jr, and Chellappa R. Compressed synthetic aperture radar [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 244-254.
  • 8Baraniuk R and Steeghs P. Compressive radar imaging[C]. Proceeding of International Conference on Radar. Boston: IEEE, 2007: 128-133.
  • 9Potter L C, Ertin E, Patter J T, and Cetin M. Sparsity and compressed sensing in radar imaging [J]. Proceedings of the IEEE, 2010, 98(6): 1006-1020.
  • 10Yang Jumfeng, Zhang Yin, and Yin Wo-tao. A fast alternating direction method for TVL1-L2 signal reconstruction from partial fourier data [J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 288-297.

共引文献14

同被引文献14

  • 1方正,佟国峰,徐心和.粒子群优化粒子滤波方法[J].控制与决策,2007,22(3):273-277. 被引量:95
  • 2Haykin S. Cognitive radar: A way of the future[J]. IEEE Signal Processing Magazine, 2006, 23(1): 30-40.
  • 3Haykin S, Zia A, Arasaratnam I, et al.. Cognitive tracking radar[C]. Proceedings of 2010 IEEE Radar Conference, Washington DC, 2010: 1467-1470.
  • 4Chavali P and Nehorai A. Cognitive radar for target tracking in multipath scenarios[C]. Proceedings of 2010 IEEE Waveform Diversity and Design Conference, Niagara Falls, Canada, 2010: 110-114.
  • 5Chavali P and Nehorai A. Scheduling and power allocation in a cognitive radar network for multiple-target tracking[J]. IEEE Transactions on Signal Processing, 2012, 60(2): 715-729.
  • 6Candes E and Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 7Candes E, Romberg J, and Tan T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
  • 8Candes E. Compressive sampling[C]. Proceedings of the International Conference of Mathematicians, Madrid, Spain, 2006: 1433-1452.
  • 9Sira S P. Time-varying waveform selection and configuration for agile sensors in tracking applications[C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, Pennsylvania, 2005: 880-884.
  • 10Kershaw D and Evans R. Optimal waveform selection fur tracking systems[J]. IEEE Transactions on h~formation Theory, 1994, 40(9): 1536-1550.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部