期刊文献+

基于改进F-SVM算法的雷达距离像目标识别 被引量:2

Radar range profile’s recognition based on an improved F-SVM algorithm
下载PDF
导出
摘要 模糊支持向量机是在不可分样本集情况下进行模式分类的有效工具,为了进一步提高该算法的推广能力,对其进行了两方面的改进。一是在高维特征空间中引入不等距分类超平面,以期提高该算法的学习精度;二是在高维特征空间中,利用本文所提出的算法,筛选出有效的训练样本集,以期缩短该算法学习所耗时间。对模糊支持向量机的改进进行了理论推导,并且给出了有效训练样本集的筛选算法。把上述改进方案应用到两种飞机的雷达一维距离像识别中,实验结果表明其取得了很好的识别效果,并且缩短了算法学习时间。 Fuzzy support vector machines (F-SVM) algorithm is effective for pattern classification on unclassifiable sample sets condition. For the sake of enhancing the algorithm's applicability, it was im- proved in this paper from two aspects. One hand, non-equidistant margin hyperplane (NM) in high di- mension feature space is introduced to improve on study precision; On the other hand, effectual training sample sets in high dimension feature space are filtrated, via algorithm introduced by this paper, to re- duce study time. This paper gave the theoretical derivation of improved F-SVM and the filter algorithm of effectual training sample sets. The improved methods were applied to Radar Range Profile's Recogni- tion of two planes. Experimental results show that these methods can obtain very excellent recognition effect and reduce the algorithm study time.
作者 方宁 谭飞
出处 《计算机工程与科学》 CSCD 北大核心 2013年第6期82-87,共6页 Computer Engineering & Science
基金 人工智能四川省重点实验室项目(2011RYJ06 2011RYY05)
关键词 模糊支持向量机 不等距分类超平面 特征空间 雷达一维距离像 fuzzy support vector machines non-equidistant margin hyperplane feature space radarrange profile
  • 相关文献

参考文献7

二级参考文献53

  • 1Müller K-R Smola A Rtsch G et al In: Schlkopf B Burges C J C Smola A J. Eds.Predicting time Series with Support vector machines[A].In: Schlkopf B, Burges C J C, Smola A J. Eds.Advances in Kernel Methods-Support Vector Learning[C].MA:MIT Press,1999.243-254.
  • 2Müller K-R Mika S Rtsch G et al.An Introduction to Kernel-Based Learning Algorithms[J].IEEE Transactions on Neural Networks,2001,12(2):181-201.
  • 3Schlkopf B Smola A Müller K-R.Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J].Neural Computation,1998,10:1299-1319.
  • 4Cristianini N, Shawe-Taylor J. An Introduction to Support Vector machines[ M]. Cambridge, UK : Cambridge University Press, 2000.
  • 5Muller K-R, Mika S, Ratsch G, et al. An Introduction to Kernel-Based Learning Algorithms[J]. IEEE Transactions on Neural Networks, 2001,12(2) : 181 - 201.
  • 6Vapnik V N. The Nature of Statistical Learning Theory[M]. NY. Springer, 1995.
  • 7Scholkopf B, Platt J C, Shawe-Taylor J, et al. Estimating the Support of a High-dimensional Distribution[ R]. Technical Report MSR-TR-99-87, Microsoft Research, 1999.
  • 8Tax D, Duin R. Data Domain Description by Support Vectors[A]. In. Verleysen M.Ed. D. Proc. ESANN[C]. Brussels:Facto Press, 1999, 251 - 256.
  • 9Ben-Hur A, Horn D, Siegelmann H T, et al. Support Vector Clustering[J]. Journal of Machine Learning Research,2001,2:125-137.
  • 10Mika S, Ratsch G, Weston B, et al. Fisher Discriminant Analysis with Kernels[A]. Neural Networks for Signal ProcessingIX[C]. New York: IEEE Press, 1999, 41- 48.

共引文献50

同被引文献25

  • 1丁建江.防空情报雷达目标智能识别的关键技术[J].空军雷达学院学报,2002,16(1):63-66. 被引量:1
  • 2LI Q, XIE W. Target Classification with Low-Resolution Surveillance Radars Based on Multifractal Features [ J ]. Progress in Electromagnetics Research B, 2012, 45:291- 308.
  • 3BELKIN M, NIYOGI P, SINDHWANI V. Manifold Reg- ularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples[J]. Journal of Machine Learning Research, 2006, 7:2399-2434.
  • 4LI M, LI H, ZHOU Z. Semi-Supervised Document Re- trieval [ J ]. Information Processing & Management, 2009, 45(3): 341-355.
  • 5TIAN X, GASSO G, CANU S. An Inductive Semi-Super- vised Algorithm for BCIs [ J ]. International Journal of Bioelectromagnetism, 2011, 13 ( 3 ) : 117-118.
  • 6WANG J, SUN J. Research on Supervised Manifold Learn- ing for SAR Target Classification [ C ]/CIMSA 2009-Interna- tional Conference on Computational Intelligence for Measure- ment Systems and Applications, Hong Kong, China, 2009.
  • 7TIAN X, GASSO G, CANU S. A Multiple Kernel Frame- work for Inductive Semi-Supervised SVM Learning [ J ]. Neurocomputing, 2012, 90:46-58.
  • 8TAO P D, HOAI AN L T. DC Optimization Algorithms for Solving the Trust Region Subproblem [ J ]. SIAM Jour- nal of Optimization, 1998, 8(2) :476-505.
  • 9张群,罗迎,何劲.雷达目标微多普勒效应研究概述[J].空军工程大学学报(自然科学版),2011,12(2):22-26. 被引量:41
  • 10马林.雷达目标识别技术综述[J].现代雷达,2011,33(6):1-7. 被引量:26

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部