期刊文献+

Zakharov方程Fourier谱方法的一致收敛性

Uniform Convergence of the Fourier Spectral Method for the Zakharov Equations
下载PDF
导出
摘要 对Zakharov方程周期边值问题的Fourier谱方法给出了按H^1模的最优误差估计,并获得了关于小参数ε的一致收敛性,数值实验证实了理论分析结果.文中还对一类相关方程的Fourier谱逼近设计了半隐时间离散格式,稳定性好且便于实施.最后,通过与其他数值方法比较,验证了该方法的有效性. In this paper, the optimal Hi error estimate of the Fourier spectral method for the Zakharov equations with periodic boundary conditions is obtained and, especially, the uniform convergence with respect to the parameter ~ is proved. Also, some semi-implicit time advancing scheme is proposed for the Fourier spectral approximation to a class of relative equations, which is of good stability and can be implemented efficiently. At last, various numerical experiments are conducted to confirm the validity of the method.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2013年第3期409-423,共15页 Acta Mathematica Scientia
基金 国家自然科学基金(11171209) 浙江省教育厅重点项目(z201120169) 上海市教委重点学科建设项目(J50101)资助
关键词 ZAKHAROV方程 FOURIER谱方法 一致收敛性 Zakharov equations Fourier spectral method~ Uniform convergence.
  • 相关文献

参考文献14

  • 1Canuto C, Hussaini M Y, Quartesoni A, Zang T A. Spectral Methods: Vhndamentals in Single Domains. Berlin: Springer, 2006.
  • 2陈娟,张鲁明.Klein-Gordon-Zakharov方程的一类初边值问题的数值解[J].数学物理学报(A辑),2009,29(2):494-504. 被引量:4
  • 3Bao Weizhu, Sun Fangfang, Wei G W. Numerical methods for the generalized Zakharov system. J Comput Phys, 2003, 190(1): 201-228.
  • 4Bao Weizhu, Sun Fangfang. Efficient and stable numerical methods for the generalized and vector Zakharov system. SIAM J Sci Comput (electronic), 2005, 26(3): 1057-1088.
  • 5Chang Qianshun, Guo Boling, Jiang Hong. Finite difference method for generalized Zakharov equations. Math Comp, 1995, 64(210): 537 553.
  • 6Chang Qianshun, Jiang Hong. A conservative difference scheme for the Zakharov equations. J Comput Phys, 1994, 113(2): 309-319.
  • 7Glassey R T. Approximate solutions to the Zakharov equations via finite differences. J Comput Phys, 1992, 100(2): 377 383.
  • 8Glassey R T. Convergence of an energy-preserving scheme for the Zakharov equations in one space dimen- sion. Math Comp, 1992, 58(197): 83-102.
  • 9Jin Shi, Markowich P A, Zheng Chunxiong. Numerical simulation of a generalized Zakharov system. J Comput Phys, 2004, 201(1): 376-395.
  • 10Jin Shi, Zheng Chunxiong. A time-splitting spectral method for the generalized Zakharov system in multi-dimensions. J Sci Comput, 2006, 26(2): 127-149.

二级参考文献2

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部