期刊文献+

基于单纯形局部搜索的自适应差分进化算法 被引量:4

Self-adaptive Differential Evolution Algorithm Based on the Simplex Local Search
下载PDF
导出
摘要 针对标准的差分进化(DE)算法在高维复杂的函数优化中易早熟收敛,进而导致搜索精度低甚至优化失败的问题,提出一种基于单纯形局部搜索的自适应的差分进化算法(SSADE).将DE算法的快速全局搜索能力与单纯形的强局部寻优能力有机结合起来,进一步提高了解的精度.参数自适应变化有效地维持了种群的多样性,自适应的变异策略扩大了个体的搜索范围,增强了算法寻优效果,仿真实验验证了新混合算法的有效性. In the report, self-adaptive differential evolution algorithm based on the simplex search (SSADE) was proposed to solve the premature convergence and low precision of standard differential evolution (DE) applied for the optimization of high-dimensional complex function. The SSADE hybrid algorithm organically integrated DE algorithm which has powerful global search capability with the simplex search method which has strong local search ability, and which further improved the precision of solution. The parameter self-adaptive adjustment maintained the diversity of the population, the self-adaptive mutation strategy expanded the search range of the individual, enhanced the effect of the algorithm optimization. The simulation results confirmed the effectiveness of the new hybrid algorithm.
作者 李会荣
出处 《海南大学学报(自然科学版)》 CAS 2013年第2期143-148,共6页 Natural Science Journal of Hainan University
基金 国家自然科学基金项目(11161001) 商洛学院科研基金项目(11SKY002)
关键词 差分进化 单纯形局部搜索 自适应变异 differential evolution simplex local search self-adaptive mutation
  • 相关文献

参考文献13

  • 1李敏强,寇纪淞.多模态函数优化的协同多群体遗传算法[J].自动化学报,2002,28(4):497-504. 被引量:33
  • 2王湘中,喻寿益.多模态函数优化的多种群进化策略[J].控制与决策,2006,21(3):285-288. 被引量:19
  • 3吴建辉,章兢,陈红安.融合Powell搜索法的粒子群优化算法[J].控制与决策,2012,27(3):343-348. 被引量:15
  • 4STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous space [ J ]. Journal of Global Optimization, 1997,11 (4) : 341 - 359.
  • 5STORN R. Designing, nonstandard filters with differential evolution[J]. IEEE Signal Processing Magazine,2005,22( 1 ) : 103 - 106.
  • 6ASLANTAS V, TUNCKANA T. Differential evolution algrithm for segmentation of wound images:proceeding of 2007 symposium on Intelligent Signal Proceesing,Madrid,October 3 -5,2007[ C]. [ S. 1. ] :IEEE Xplore,2007.
  • 7GONG Wen-yin, CAI Zhi-hua, JIANG Liang-xiao. Enhancing the performance of differential evolution using orthogonal design method [ J ]. Applied Mathematics and Computation,2008,206 ( 1 ) :56 - 59.
  • 8BREST J, MAUCEC M S. Self-adaptive differential evolution algorithm using population size reduction and three strategies [ J ]. Soft Comput,2011,15 :2157 - 2174.
  • 9HRSTKA O, KUCEROVA A. Improvements of real coded genetic algorithms based on differential operators preventing prema- ture eonvergence[ J ]. Advances in Engineering Software,2004,35 ( 3 ) : 237 - 246.
  • 10贾东立,郑国莘.基于混沌和高斯局部优化的混合差分进化算法[J].控制与决策,2010,25(6):899-902. 被引量:18

二级参考文献39

共引文献524

同被引文献52

  • 1李茂军,罗安,童调生.人工免疫算法及其应用研究[J].控制理论与应用,2004,21(2):153-157. 被引量:43
  • 2陈兰荪,孟建柱,焦建军.生物动力学[M].北京:科学出版社,2009.
  • 3HOLLANDJ.Adaptationinnaturalandartificialsystems[M].Cambridge:MITPress,1992.
  • 4EBERHARTR,KENNEDYJ.Newoptimizerusingparticleswarmtheory[C]//Procofthe6thInternationalSymposiumonMicroMachineandHumanScience.Piscataway,NJ:IEEEPress,1995:38-43.
  • 5SIMOND.Biogeographybasedoptimization[J].IEEETransonEvolutionaryComputation,2008,12(6):702-713.
  • 6BEYER H.Thetheoryofevolutionstrategies[M].NewYork:Springer,2001.
  • 7MEZURAMONTESE,COELLOC.Asimplemultimemberedevolutionstrategytosolveconstrainedoptimizationproblems[J].IEEETransonEvolutionaryComputation,2005,9(2):1-17.
  • 8BURNETH.Theclonalselectiontheoryofacquiredimmunity[M].Cambridge:CambridgeUniversityPress,1959.
  • 9CASTROD.Learningandoptimizationusingthecloneselectionprinciple[J].IEEETransonEvolutionaryComputation,2002,6(3):239-251.
  • 10ENATSUY,MESSINAE,MUROYAY,etal.StabilityanalysisofdelayedSIRepidemicmodelswithaclassofnonlinearincidencerates[J].AppliedMathematicsandComputation,2012,218(9):5327-5336.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部