期刊文献+

RSA加解密算法的高效GPU实现

Efficient acceleration about encryption and decryption of RSA algorithm on GPU
下载PDF
导出
摘要 RSA算法的核心运算为模幂运算,具有极高的计算复杂度和计算密度。研究了基于GPU的RSA加解密方法,根据算法并行度的不同,采用了串行和并行两种方法进行实现。实验结果表明,基于GPU的RSA加解密方法成功地实现了硬件加速。相对于CPU上运行的RSA加解密方法,该算法极大地提高了执行效率,获得了最高4倍的加速;在处理数据较少时,并行算法比串行算法有优势,但是串行算法在处理数据较多时性能逐渐增加,并获得了最高性能。 GPU that has powerful massive data parallel computing is applied widely in the computing intensive area. The core of RSA algorithm is a modulur algorithm which has high computing complexity. In this paper, the encryption and decryption of RSA based on GPU was studied. According to the different parallel level, serial algorithm and parallel algorithm were implemented. The result shows that the method of RSA based on GPU, which is more efficient compared with the RSA algorithm implemented on CPU, can get the acceleration of more than four times. When dealing with little data, parallel algorithm has a better performance than serial algorithm. However with the input data increasing, the performance of serial algorithm exceed the parallel one gradually, and get the best performance at last.
出处 《计算机应用》 CSCD 北大核心 2013年第A01期35-39,共5页 journal of Computer Applications
基金 全军军事学研究生课题(2011JY002-435) 湖北省自然科学基金资助项目(2010CDB01501)
关键词 统一计算设备架构 图形处理单元 模幂运算 并行 Compute Unified Device Architecture(CUDA) Graphic Processing Unit(GPU) modular exponentiation parallelization
  • 相关文献

参考文献16

  • 1KENDEM G,1SHIHARA Y. Brute force attack on UNIX passwordswith SIMD computer[ C]// Proceedings of the 8th USENIX SecuritySymposium. New York: ACM, 1999:137 - 142.
  • 2MANAVSKI S A. CUDA compatible GPU as an efficient hardwareaccelerator for AES cryptography[ C]// ICSPC 2007: IEEE Interna-tional Conference on Signal Processing and Communications. Piscat-away: IEEE, 2007:738 -744.
  • 3HARRISON 0, WALDRON J. AES encryption implementation and anal-ysis on commodity graphics processing units [C]// CHESW: Proceed-ings of the 9th International Workshop on Cryptt^raphic Hardware and- Embedded Systems. Heidelbeig: Springer Berlin, 2007:209 - 226.
  • 4SESHADRINATHAN M,DEMPSKI K. Implementation of advancedencryption standard for encryption and decryption of images and texton a GPU [ C]// IEEE Computer Society Conference on ComputerVision and Pattern Recognition Workshops. Washington, DC: IEEEComputer Society, 2008:1 -6.
  • 5叶剑,李立新.基于GPU的AES快速实现[J].计算机工程与设计,2010,31(2):256-259. 被引量:10
  • 6刘丹,赵广辉,钟珞.GPU加速希尔加解密方法的研究[J].计算机工程与应用,2010,46(18):49-51. 被引量:3
  • 7李立新,叶剑,余洋.基于GPU的MD6算法快速实现[J].北京工业大学学报,2010,36(5):640-645. 被引量:2
  • 8汤伟宾.GPU并行技术在口令恢复中的应用[J].电信科学,2010,26(S2):24-28. 被引量:1
  • 9张润梅,王霄.基于CUDA架构的MD5破解方法研究[J].计算机科学,2011,38(2):302-304. 被引量:8
  • 10翁捷,吴强,杨灿群.基于OpenCL的MD5破解算法[J].计算机工程,2011,37(4):119-121. 被引量:5

二级参考文献60

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 2吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 3侯整风,李岚.椭圆曲线密码系统(ECC)整体算法设计及优化研究[J].电子学报,2004,32(11):1904-1906. 被引量:30
  • 4Yongjin Yeom,Yongkuk Cho,Moti Yung.High-speed implementations of block cipher ARIA using graphics processing units[J]. International Conference on Multimedia and Ubiquitous Engineering(IEEE),2008:271-275.
  • 5Addison Wesley. AES encryption and decryption on the GPU [M].GPU Gems 3 GPU Computing,2007.
  • 6Nvidia Corporation.NVIDIA_CUDA_Programming_Guide_2.0 [EB/OL].http://developer.download.nvidia.com/compute/cuda.
  • 7Debra L Cook, Angelos D Keromytis. CryptoGraphics: Exploit graphics cards for security[M].Springer,2006.
  • 8Owen Harrison,John Waldron.AES encryption implementation and analysis on commodity graphics processing units [C]. 9th Workshop on Cryptographic Hardware and Embedded Systems, 2007:209-226.
  • 9WANG Xiao-yun, YU Hong-bo. Efficient collision search attacks on SHA-0 [ C ] //Advances in Cryptology-Eurocrypt '05. Berlin : Springer-Verlag, 2005 : 19-35.
  • 10RIVEST R L. The md6 hash function, a proposal to nist for sha-3 [ DB/OL]. [ 2008-10-27 ]. http :/,/groups. csail, mit. edu/ cis/md6/submitted/Supporting Documentation/md6 report, pdf.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部