期刊文献+

凸幂凝聚算子的Altman型不动点定理

Fixed point theorems of Altman type about convex-power condensing operator
原文传递
导出
摘要 讨论了第一个指数大于1,第二个指数不小于0和第一个指数在0到1之间,第二个指数不小于0指数情形不等式条件下凸幂凝聚算子不动点的存在性,得到了几个新的结论,推广和补充了Altman型不动点定理。 The existence of fixed points about convex-power condensing operator is discussed under the inequality conditions in which the first exponent is respectively greater than 1 and between 0 and 1, the second exponem is not less than O. Some new conclusions are obtained which extend and supplement the fixed point theorems of Altman type.
机构地区 东北大学理学院
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2013年第6期87-90,99,共5页 Journal of Shandong University(Natural Science)
基金 辽宁省自然科学基金资助项目(201102070)
关键词 不动点 凸幂凝聚算子 1-集压缩 fixed point convex-power condensing operator 1 -set-contractive
  • 相关文献

参考文献8

  • 1孙经先.非线性泛函分析及其应用[M].北京:科学出版社.2007.
  • 2XU Shaoyuan. New fixed point theorems for 1-set-contractive operators in Banach spaces [J]. Nonlinear Anal, 2007, 67 (3) : 938-944.
  • 3张国伟,山珊.Altman型不动点定理[J].东北大学学报(自然科学版),2009,30(12):1800-1802. 被引量:2
  • 4孙经先,张晓燕.凸幂凝聚算子的不动点定理及其对抽象半线性发展方程的应用[J].数学学报(中文版),2005,48(3):439-446. 被引量:19
  • 5ZHANG Guowei, ZHANG Tongshan, ZHANG Tie. Fixed point theorems of Rothe and Altman types about convex-power con- densing operator and application[J] Applied Mathematics and Computation, 2009, 214(2) :618-623.
  • 6SHI Hongbo, LI Wantong, SUN Hongrui, Existence of mild solutions for abstract mixed type semilinear evolution equations[J]. Turkish J Math, 2011, 35(3) :457-472.
  • 7ZHAO Lvhuizi, SUN Jingxian. Fixed point theorems of convex-power 1-setcontraction operators in Banach spaces [J].Fixed Point Theory and Applications, 2012, 2012(56) :1-8.
  • 8赵吕慧子,孙经先.Banach空间中Rothe及Altman型凸幂1集压缩算子的不动点定理[J].山东大学学报(理学版),2011,46(4):49-52. 被引量:3

二级参考文献16

  • 1孙经先,张晓燕.凸幂凝聚算子的不动点定理及其对抽象半线性发展方程的应用[J].数学学报(中文版),2005,48(3):439-446. 被引量:19
  • 2刘立山,孙经先.Banach空间中非线性混合型微分积分方程的可解性[J].系统科学与数学,1996,16(3):253-259. 被引量:18
  • 3孙经先.非线性泛函分析及其应用[M].北京:科学出版社.2007.
  • 4Granas A, Dugundji J. Fixed point theory[M]. New York: Springer-Verlag, 2003.
  • 5Istratescu V I. Fixed point theory--an introduction [ M]. Dordrecht: D Reidel Publishing Company, 1981.
  • 6Deimling K. Nonlinear functional analysis [ M]. Berlin: Springer-Verlag, 1985.
  • 7Avery R, Henderson J, O' Regan D. Four functionals fixed point theorem[J], Math Comput Modelling, 2008,48(7/ 8) : 1081 - 1089.
  • 8O' Regan D, Precup R. Compression-expansion fixed point theorem in two norms and applications [ J ]. J Math Anal Appl, 2005,309(2) :383 - 391.
  • 9Zhang G W, Sun J X. A generalization of the cone expansion and compression fixed point theorem and applications [ J ]. Nonlinear Anal, 2007,67(2) :579 - 586.
  • 10Xu S Y. New fixed point theorems for 1-set-contractive operators in Banach spaces[J ]. Nonlinear Anal, 2007, 67 (3) :938 - 944.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部