期刊文献+

基于图像配准的动态场景运动目标检测算法 被引量:6

Study on Moving Object Detection Algorithm Based on Different Color Space
下载PDF
导出
摘要 针对摄像机运动的动态场景下运动目标的检测问题,提出了基于Harris角点方根-算术均值距离配准的动态场景运动目标检测算法。首先将当前帧图像与前一帧图像进行配准,获取图像的全局运动参数;利用求得的运动参数对当前图像进行运动补偿;然后,将其与存储的前两帧图像进行帧差法,以获得运动目标的轮廓信息;以该运动目标区域为掩模,检测并定位该运动目标。实验结果表明,此算法能够较好的处理摄像机运动等动态场景情况下的运动目标定位问题,为运动目标的跟踪和识别奠定基础。 For moving object detection in dynamic scene, the paper presents a moving object detection algorithm of dynamic scenes based on Harris comer points' SAM. Firstly, registers the current frame image with the previous image to catch the global motion parameters; compensates image motion by using of the motion parameters; and then takes frame differencing method with the first two images, to get the outline of moving object; regards moving region as mask, and detects and locates the moving target.The experimental results show that this algorithm can deal with positioning of moving targets of dynamic scenes, such as camera motion, etc. which lay the foundation for moving target tracking and identification.
出处 《长春理工大学学报(自然科学版)》 2013年第1期4-9,共6页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 国家科技支撑计划项目(2009BAE69B02)
关键词 运动目标检测 动态场景 图像配准 帧差法 moving object detection dynamic scene image registration frame differencing method
  • 相关文献

参考文献8

  • 1Tsaig Y, Averbuch A. Automatic segmentation of moving objects in video sequences-A region label- ing approach[J.IEEE Conference on Computer Vi- sion and Pattern Recognition, 1999, (66) : 164-170.
  • 2David A Forsyth, Jean Ponce.Computer Vision: A Modem Approach[M].New Jersey:Prentice Hall,2002.
  • 3Dellaert F, Seitz S, Thorpe C, et al.Structure from motion without correspondence[C].IEEE Conference on Computer Vision and Pattern Recognition, 2000: 557-564.
  • 4IraniM, Anandan P.A unified approach to moving object detection in 2D and 3D scenes [J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 1998,20 (6) : 577-589.
  • 5Barron J,Fleet D,Beauchemin S.Performance of op- tical flow techniques[J].Intemational Journal of Com- puter Vision, 1994,12(1) :42-77.
  • 6Anderson C H, Butt P J, Van G S.Change detec- tion and tracking using pyramid transform techniques [J].SPIE, Intelligent Robots and Computer Vision, 1985,579: 72-78.
  • 7卢振泰,陈武凡.基于共生互信息量的医学图像配准[J].计算机学报,2007,30(6):1022-1027. 被引量:27
  • 8丁莹,李文辉,范静涛,杨华民.基于多尺度Harris角点SAM的医学图像配准算法[J].中国图象图形学报,2010,15(12):1762-1768. 被引量:7

二级参考文献25

  • 1张二虎,卞正中.基于最大熵和互信息最大化的特征点配准算法[J].计算机研究与发展,2004,41(7):1194-1199. 被引量:29
  • 2卢振泰,陈武凡.基于共生互信息量的医学图像配准[J].计算机学报,2007,30(6):1022-1027. 被引量:27
  • 3Viola P, Wells W M. Alignment by maximization of mutual information [ C ]//Proceedings of International Conference on Computer Vision. Washington, DC, USA: IEEE Computer Society, 1995 : 16-23.
  • 4Collignon A, Maes F, Delaere D, et al. Automated multimodality medical image registration using information theory [ C ]// Information Processing in Medical Imaging: Computational Imaging and Vision. Den haag, the Netherland: Kluwer Academic Publishers. 1995,263-274.
  • 5Studholme C, Hill D L G, Hawkes D J. An overlap invariant entropy measures of 3D medical image alignment [ J]. Pattern Recognition, 1999, 32( 1 ) :71-86.
  • 6Pluim J, Maintz J, Viergever M A. Image registration by maximization mutual information and gradient information [ J]. IEEE Transactions on Medical Imaging, 2001, 19(8) :809-814.
  • 7Pluim J P W, Maintz J B A, Viergever M A. Information measures in medical image registration[J]. IEEE Transactions on Medical hnaging, 2004, 23(12) : 1508-1516.
  • 8Yves Dufournaud, Cordelia Schmid, Radu Horaud. Image matching with scale adjustment [J]. Computer Vision and Image Understanding, 2004, 93 (2) : 175-194.
  • 9Caner G, Tekalp A M, Sharma G, et al. Local image registration by adaptive filtering [ J ]. IEEE Transactions on Image Processing, 2006, 15 (10) :3053-3065.
  • 10Kelman A, Sofka M, Stewart C V. Keypoint descriptors for matching across multiple image modalities and nonlinear intensity variations [ C ]//Proceedings IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC, USA: IEEE Computer Society, 2007 : 1-7.

共引文献32

同被引文献33

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部