摘要
本文研究由两个串联的电阻电容电感分路的约瑟夫森结和一个耦合电阻组成的阵列,通过数值模拟给出了阵列系统随着直流偏置电流变化的分岔图和最大李雅普诺夫指数,分析了阵列系统进入混沌的方式,阐明了混沌状态和周期状态对应的参数区间。并且利用混沌信号驱动法的理论提出了两个电阻电容电感分路的约瑟夫森结阵列混沌同步的方案,通过适当调节驱动强度使最大条件李雅普诺夫指数为负,完成混沌同步。
We investigate the array made of two resistance-capacitance-inductance-shunted Josephson junctions (RCLSJJS) and a coupling resistance, The bifurcation diagram and maximum Lyapunov exponents of the array system versus the direct bias current are given by using numerical results. We analyze the way of going into chaotic states, and elucidate the parameters regions of chaos and period states. Moreover, the scheme of chaos synchronization for two RCLSJJ array is presented according to the theory of chaotic signal drive method. By properly adjusting the drive strength, the chaos synchronization is achieved when the maximum condition Lyapunov exponent is negative.
出处
《长春理工大学学报(自然科学版)》
2013年第1期150-153,157,共5页
Journal of Changchun University of Science and Technology(Natural Science Edition)
基金
吉林省教育厅资助项目(2012JYT09)
关键词
混沌同步
电阻电容电感分路的约瑟夫森结阵列
条件李雅普诺夫指数
chaos synchronization
resistance-capacitance-inductance-shunted Josephson junction array
condition Lyapunov exponent