期刊文献+

经验模态分解与RBF神经网络在轴承故障诊断中的应用

下载PDF
导出
摘要 针对轴承振动信号的非线性与非平稳性,采用经验模态分解与RBF神经网络相结合的故障诊断方法.首先,采用经验模态分解法对轴承信号进行分解得到各个固有模态函数,提取各个固有模态函数的能量作为故障特征参量,然后将故障特征参量输入RBF神经网络进行训练与测试,实现了智能化的故障模式识别.结果表明,基于该方法的轴承故障诊断系统能够准确地识别外圈裂纹、内圈点蚀和保持架断裂等故障,具有较好的实际工程应用价值.
作者 刘慧玲
出处 《晋中学院学报》 2013年第3期89-93,共5页 Journal of Jinzhong University
  • 相关文献

参考文献5

二级参考文献49

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部