摘要
针对轴承振动信号的非线性与非平稳性,采用经验模态分解与RBF神经网络相结合的故障诊断方法.首先,采用经验模态分解法对轴承信号进行分解得到各个固有模态函数,提取各个固有模态函数的能量作为故障特征参量,然后将故障特征参量输入RBF神经网络进行训练与测试,实现了智能化的故障模式识别.结果表明,基于该方法的轴承故障诊断系统能够准确地识别外圈裂纹、内圈点蚀和保持架断裂等故障,具有较好的实际工程应用价值.
出处
《晋中学院学报》
2013年第3期89-93,共5页
Journal of Jinzhong University