期刊文献+

Linear arboricity of Cartesian products of graphs

笛卡尔积图的线性荫度(英文)
下载PDF
导出
摘要 A linear forest is a forest whose components are paths. The linear arboricity la (G) of a graph G is the minimum number of linear forests which partition the edge set E(G) of G. The Cartesian product G□H of two graphs G and H is defined as the graph with vertex set V(G□H) = {(u, v)| u ∈V(G), v∈V(H) } and edge set E(G□H) = { ( u, x) ( v, Y)|u=v and xy∈E(H), or uv∈E(G) and x=y}. Let Pm and Cm,, respectively, denote the path and cycle on m vertices and K, denote the complete graph on n vertices. It is proved that (Km□Pm)=[n+1/2]for m≥2,la(Km□Cm)=[n+2/2],and la(Km□Km)=[n+m-1/2]. The methods to decompose these graphs into linear forests are given in the proofs. Furthermore, the linear arboricity conjecture is true for these classes of graphs. 线性森林是指所有分支都是路的森林.图G的线性荫度la(G)是划分G的边集E(G)所需的线性森林的最小数目.图G和H的笛卡尔积图G□H定义为:顶点集V(G□H)={(u,v)u∈V(G),v∈V(H)}.边集E(G□H)={(u,x)(v,y)u=v且xy∈E(H),或uv∈E(G)且x=y}.令Pm与Cm分别表示m个顶点的路和圈,Kn表示n个顶点的完全图.证明了la(Kn□Pm)=(n+1)/2(m≥2),la(Kn□Cm)=(n+2)/2以及la(Kn□Km)=(n+m-1)/2.证明过程给出了将这些图分解成线性森林的方法.进一步的线性荫度猜想对这些图类是成立的.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期222-225,共4页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.10971025)
关键词 linear forest linear arboricity Cartesian product 线性森林 线性荫度 笛卡尔积
  • 相关文献

参考文献14

  • 1Harary F. Covering and packing in graphs 1 [ J]. Annals of the New York Academy of Sciences, 1970, 175(1) : 198 - 205.
  • 2Akiyama J, Exoo G, Harary F. Covering and packing in graphs 3: cyclic and acyclic invariants [J]. Math Slova- ca, 1980, 311(4): 405-417.
  • 3Akiyama J, Exoo G, Harary F. Covering and packing in graphs 4: linear arboricity [J]. Networks, 1981, 11(1) : 69 - 72.
  • 4Enomoto H, Ptroche B. The linear arboricity of some regular graphs [ J]. Journal of Graph Theory, 1984, 8 (2): 309-324.
  • 5Guldan F. The linear arboricity of 10-regular graphs [J]. Math Slovaca, 1986, 36(3): 225-228.
  • 6Martinova M K. Linear arboricity of maximal outerplanar graphs [ J]. Godishnik Vissh Uchebn Zaved Prilozhna Math, 1987, 23: 147-155. (in Bulgarian).
  • 7Wu Jianliang. On the linear arboricity of planar graphs [J]. Journal of Graph Theory, 1999, 31(2): 129-134.
  • 8Wu Jianliang, Wu Yuwen. The linear arboricity of planar graphs of maximum degree seven are four [ J]. Journal of Graph Theory, 2008, 58(3): 210-220.
  • 9Wu Jianliang. The linear arboricity of series-parallel graphs [J]. Graphs and Combinatorics, 2000, 16(3): 367 - 372.
  • 10Lu Xiaoxu, Xu Baogang. A note on vertex-arboricity of plane graphs [ J]. Journal of Nanjing University: Natural Sciences, 2007, 43(1): 13-18.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部