期刊文献+

基于模拟退火策略的细菌觅食优化算法

The Bacteria Foraging Optimization Algorithm Based on Simulated Annealing Strategy
下载PDF
导出
摘要 针对标准细菌觅食优化算法(BFOA)求解精度不高、稳定性较差、容易陷入局部极值的问题,提出了一种基于模拟退火策略的细菌觅食优化算法(SA-BFO)。该算法在趋向操作完成后,采用模拟退火策略对全局最优个体进行优化,提高算法的优化精度和稳定性,利用模拟退火算法的概率突跳性来避免陷入局部极值。仿真实验结果表明,改进算法比标准细菌觅食优化算法具有较高的优化性能。 Aiming at the problems of standard bacteria foraging optimization algorithm(BFOA)’s lowly search accuracy,poorly sta bility,easily to trap into local extremum,proposes a bacteria foraging optimization algorithm based on simulated annealing atrategy(SA-BFO).the algorithm adopts the strategy of simulated annealing to optimize the global optimal individual after chemotaxis,im prove the optimization precision and stability of the algorithm,uses the probability kick of simulated annealing algorithm to avoid falling into local extremum.The simulation experimental results show that the improved algorithm has better optimized perfor mance than the standard bacteria foraging optimization algorithm.
作者 王红 王联国 WANG Hong,WANG Lian-guo(College of Information Science and Technology,Gansu Agricultural University,Lanzhou 730070,China)
出处 《电脑知识与技术》 2013年第4期2442-2445,2458,共5页 Computer Knowledge and Technology
基金 甘肃省教育信息化发展战略研究项目(2011-02)
关键词 细菌觅食优化算法 模拟退火 概率突跳性 精度 稳定性 bacteria foraging optimization algorithm simulated annealing probability kick precision stability
  • 相关文献

参考文献9

  • 1麦雄发,李玲.混合PSO的快速细菌觅食算法[J].广西师范学院学报(自然科学版),2010,27(4):91-94. 被引量:8
  • 2Chen H,Zhu Y,Hu K.Cooperative bacterial foraging optimization[J].Discrete Dynamicsin Natureand Society,2009,3(5):635-656.
  • 3储颖,糜华,纪震,吴青华.基于粒子群优化的快速细菌群游算法[J].数据采集与处理,2010,25(4):442-448. 被引量:19
  • 4Das S,Dasgupta S,Biswas A,et al.Onstability of the chemotactic dynamicsin bacterial foraging optimization algorithm[J].IEEETransac- tionson Systems,Man,and Cybernetics-PartA:Systems and Humans,2009,39(3):670-679.
  • 5Mishra S.Hybridleast-square adaptive bacterial foraging strategy forharm onicestimation[J].IEEEProceedings-Generation,Transmission, Distribution,2005,152(3):379-389.
  • 6Biswas A,Dasgupta S,Das S,et al.Synergy of PSO and bacterial foraging optimization-Acomparative study on Merical benchmarks[J].In- novationsin Hybrid Intelligent Systems,2007,26(13):44(3):255-263.
  • 7Dasgupta S,Biswas A,Das S,et al.Automatic circled etectiononimages with an adaptive bacterial foraging algorithm[C],2008Genetic and Evolutionary ComputationConference(GECCO 2008),2008,13(5):1695-1696.
  • 8魏延,谢开贵.模拟退火算法[J].蒙自师范高等专科学校学报,1999,1(4):7-11. 被引量:10
  • 9王联国,洪毅,赵付青,余冬梅.一种模拟退火和粒子群混合优化算法[J].计算机仿真,2008,25(11):179-182. 被引量:16

二级参考文献28

  • 1王玫,朱云龙,何小贤.群体智能研究综述[J].计算机工程,2005,31(22):194-196. 被引量:41
  • 2李任峰,何启盖,周锐,陈焕春.细菌鞭毛研究概况及进展[J].微生物学通报,2005,32(6):124-127. 被引量:21
  • 3胡建秀,曾建潮.具有随机惯性权重的PSO算法[J].计算机仿真,2006,23(8):164-167. 被引量:37
  • 4王波,王灿林,董云龙.基于D-S的粒子群算法[J].计算机仿真,2007,24(2):162-164. 被引量:4
  • 5刘鹏,张月娟,赵廷昌.细菌群体感应系统的研究进展[J].中国农学通报,2007,23(6):467-472. 被引量:10
  • 6J Kenned, R Eberhart. Particle Swarm Optimization [ C ]. In : IEEE Int'l. Conf. on Neural Networks, Perth, Australia 1995. 1942- 1948.
  • 7R Eberhart, J Kennedy. A new optimizer using particle swarm theory[ C]. In:Proc of the 16th International symposium on Micro Machine and Human Science. Nagoya, Japan : IEEE, 1995.39 -43.
  • 8Y Shi, R Eberhart. A modified particle swarm optimizer[ J] . IEEE World Congress on Computational Intelligence. 1998. 69 -73.
  • 9M Clerc. The swarm and the Queen: Towards a deterministic and adaptive particle swarm optimization [ C ]. In : Proceedings of the Congress on Evolutionary Computation. Piscataway, NJ : IEEE Service Center, 1999. 1951 - 1957.
  • 10P J Angeline. Evolutionary optimization versus particle swarm optimization: Philosophy and performance difference [ C ]. In: Proceedings of the 7th Annual Conference on Evolutionary Programming. Gemany: Springer, 1998. 601-610.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部