期刊文献+

基于SIFT算子的图像匹配算法研究 被引量:64

An Improved Image Matching Algorithm Based on SIFT
下载PDF
导出
摘要 针对目前基于SIFT(scale invariant feature transform)的图像匹配算法在匹配相似区域较多的可见光图像时,匹配约束条件单一,没有有效剔除误匹配点,误匹配率高的问题,提出一种匹配改进算法,针对128维SIFT特征向量,采用距离匹配和余弦相似度匹配相结合的测度方法,利用特征点方向一致性进一步降低误匹配率.实验结果表明:改进算法对图像的缩放、旋转、光照、噪声和小尺度的视角变换均有较好的匹配效果.与原算法相比,在保证匹配点数和匹配时间的基础上,改进算法对旋转、缩放、噪声模糊和光照变换的误匹配率平均降低10%~20%,对于小尺度的视角变换,误匹配率平均降低5%. For matching visible image with many similar regions, the original image matching algorithm based on SIFT (scale invariant feature transform) has the disadvantages of limited matching constraints, high false matching rate and difficulty to effectively remove mismatching points. To overcome the shortcomings above, an improved algorithm was proposed in which a combined measure of distance similarity matching with cosine similarity matching was adopted to dealing with 128-dimensional feature vectors. Further, the orientation consistency of the image feature points was employed to reduce the false matching rate. Experimental results show that the proposed algorithm has a good matching result on the conditions of image zooming, rotating, lighting, noising and small-scale perspective transformation. Compared with the original algorithm, based on the premise of ensuring enough matching points and definite matching time, the improved algorithm achieves a 10% to 20% average reduction of the false matching rate for images zooming, rotating, lighting, noising transformation and 5% for small-scale perspective transformation.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2013年第6期622-627,共6页 Transactions of Beijing Institute of Technology
关键词 SIFT 图像匹配 余弦相似度 方向一致性 校正误匹配 scale invariant feature transform (SIFT) image matching cosine similarity consistency of orientation mismatching calibration
  • 相关文献

参考文献11

  • 1Brown M, Lowe D G. Recognizing panoramas[C] ff Proceedings of the 9th International Conference onComputer Vision ( ICCV03). Nice, France.. IEEE, 2003 .. 1218 - 1225.
  • 2Lowe D G. Distinctive image features from scale- invariant keypoints [ J ]. International Journal of Computer Vision, 2004,60(2) : 91 - 110.
  • 3张春美,龚志辉,孙雷.改进SIFT特征在图像匹配中的应用[J].计算机工程与应用,2008,44(2):95-97. 被引量:51
  • 4Jegou H, Harzallah H, Schmid C. A contextual dissimilarity measure for accurate and efficient image search[C] ffProceedings of the Conference on Computer Vision Pattern Recognition. Minneapolis, USA: Is. n.], 2007:1-8.
  • 5Zitova B, Flusser J. Image registration methods: a survey[J]. Image and Vision Computing, 2003, 21: 977 - 100.
  • 6Lowe D G. Object recognition from local scale-invariant features [ C] // Proceedings of the International Conference on Computer Vision. Kerkyra, Greece: IEEE, 19991150 - 1157.
  • 7Mikolajczyk K, Schmid C. Scale A{fine invariant interest point detectors [J]. International Journal o{ Computer Vision, 2004, 1(60) :63 - 86.
  • 8Mikolajezyk K, Schmid C. A performance evaluation of local descriptors[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(10) .. 1615 - 1630.
  • 9张炜,刘伟,普杰信.一种基于SIFT和区域选择的图像拼接方法[J].微电子学与计算机,2010,27(6):205-207. 被引量:8
  • 10Lindeberg T. Scale-space theory: a basic tool for analyzing structures at different scales[J]. Journal of Applied Statistics, 1994,21(2) : 225 - 270.

二级参考文献29

共引文献187

同被引文献451

引证文献64

二级引证文献316

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部