期刊文献+

三参数广义帕累托分布的似然矩估计 被引量:7

Likelihood Moment Estimation for the Three-Parameter Generalized Pareto Distribution
下载PDF
导出
摘要 广义帕累托分布(GPD)在极值统计的POT模型中常常被用来逼近超过阈值u的超出量X_i-u的分布.为解决经典估计方法存在的问题,Zhang(Zhang J,Likelihood moment estimation for the generalized Pareto distribution,Aust N Z J Stat,2007,49:69-77)对两参数GPD(GP2)提出一种新的估计方法——似然矩估计(LM),它容易计算且具有较高的渐近有效性.本文将此方法从两参数的情形推广到三参数GPD(GP3),结果表明尺度参数和形状参数估计的渐近性质与以上所提到的文章完全相同.针对GP3的LM估计也具有总是存在、易于计算以及对绝大多数的形状参数具有接近于最小的偏差和均方误差的特点. In the peaks-over-threshold (POT) model, the generalized Pareto distribution (GPD) is commonly used to fit the distribution of the excess Xi- u, where u is the threshold. Zhang (Zhang J, Likelihood moment estimation for the generalized Pareto distribution, Aust N Z J Star, 2007, 49:69-77) proposed a new estimation method--likelihood moment estimation (LM) for 2-parameter GPD, which is easy to compute and has high asymptotic efficiency with respect to the traditional methods. This method has been extended to 3- parameter GPD in the present paper. The result shows that the asymptotic property of estimators for scale and shape parameters is the same as that of Zhang. Moreover, the LM estimator for 3-parameter GPD always exists, is simple to compute and is close to the lowest bias and rose over a wide range of shape parameters.
作者 王芳 门慧
出处 《数学年刊(A辑)》 CSCD 北大核心 2013年第3期299-312,共14页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10971143 No.11271033) 北京市教育委员会(No.KM200910028003 No.KM201110028003)的资助
关键词 广义帕累托分布 似然矩估计 渐近分布 极值数据 Generalized Pareto distribution, Likelihood moment estimation Asymptotic distribution, Extremal data
  • 相关文献

参考文献22

  • 1Pickands J. Statistical inference using extreme order statistics [J]. Ann Statist, 1975, 3:119-131.
  • 2Balkema A A, de Haan L. Residual life time at great age [J]. Ann Probab, 1974, 2:792- 804.
  • 3Embrechts P, Kluppelberg C, Mikosch T. Modelling extremal events for insurance and finance [M]. Berlin: $pringer-Verlag, 1997.
  • 4Ferreira J A, Guedes S C. An application of the peaks over threshold method of predict extremes of significant wave height [J]. J Offshore Mech Arctic Eng, 1998, 120:165-176.
  • 5Naess A. Statistical extrapolation of extreme value data based on the peaks over thresh- old method [J]. J Offshore Mech Arctic Eng, 1998, 120:91-96.
  • 6Caires S, Sterl A. 100-year return value estimate for ocean wind speed and significant wave height from the ERA-40 data [J]. J Clim, 2005, 18(7):1032 -1048.
  • 7Davison A C. Modelling extremes over high thresholds [C]//J Tiago de Oliveira, Dor- drecht, Reidel (eds). Statistical extremes and applications. Bernlin: Springer-Verlag, 1984:461-482.
  • 8Smith R L. Theshold methods for sample extremes [C]//J Tiago de Oliveira, Dordrecht, Reidel (eds). Statistical extremes and applications. Bernlin: Springer-Verlag, 1984:621- 638.
  • 9Smith R L. Maximum likelihood estimation in a class of nonregular cases [J]. Bio- metrika, 1985, 72:67-90.
  • 10Hosking J R M, Wallis J R, Wood E F. Estimation of the generalized extreme value distribution by the method of probability-weighted moments [J]. Technometrics, 1985, 27:251-261.

同被引文献71

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部