摘要
Under conditions of high temperature and high pressure, the non-uniformity of pressure loads has intensified the stress concentration which impacts the safety of curved pipes and elbows. This paper focuses on the pressure distribution and flow characteristic in a curved 90° bend pipe with circular cross-sections, which are widely used in industrial applications. These flow and pressure characteristics in curved bend pipes have been researched by employing numerical simulation and theoretical analysis. Based on the dimensionless analysis method a formula for the pressure of Newtonian fluid flow through the elbow pipes is deduced. Also the pressure distributions of several elbows with different curvature ratio R/D are obtained by numerical methods. The influence of these non-dimensional parameters such as non-dimensional curvature ratio, Reynolds number and non-dimensional axial angle a and circumferential angle fl on the pressure distribution in elbow pipes is discussed in detail. A number of important results have been achieved. This paper provides theoretical and numerical methods to understand the mechanical property of fluid flow in elbow pipes, to analyze the stress and to design the wall thickness of elbow pipes.
基金
supported by the Key Project of Chinese Ministry of Education (No.211096)
support of the National Natural Science Foundation of China (No: 11272188, 51276102)
Science and technology project of Shandong Province (No.2008GG2TC01011-14)