摘要
In the wavelength range of 231-275 nm, we have studied the mass-resolved dissociation spectra of OCS+ via B2∑+←X2П3/2(000) and B2∑+←X2П1/2(000, 001) transitions by preparing OCS+ ions in the well-defined spin-orbit states. The spectroscopic constants of v1 (CS stretch)=828.9 (810.4) cm-1, u2 (bend)=491.3 cm-1 and v3(CO stretch)=1887.2 cm-1 for OCS+(B2∑+) are deduced. The observed dependence of the v2(bend) mode excitation of B2∑+ on the spin-orbit splitting of X2П(Ω=1/2, 3/2) in the B2∑+←-X2П transition can be attributed to the K coupling between the (000)2П1/2 and (010)2∑+/2 vibronic levels of X2П state, which makes the B2∑+(010)←X2П1/2(000) transition possible.