期刊文献+

SYNTHESIS OF HIGH MOLECULAR WEIGHT POLYISOBUTYLENE VIA CATIONIC POLYMERIZATION AT ELEVATED TEMPERATURES 被引量:4

SYNTHESIS OF HIGH MOLECULAR WEIGHT POLYISOBUTYLENE VIA CATIONIC POLYMERIZATION AT ELEVATED TEMPERATURES
原文传递
导出
摘要 A novel simple but effective initiating system of H2O/AlCl3/veratrole (VE) has been developed to synthesize high molecular weight polyisobutylene (PIB) at elevated temperatures via cationic polymerization of isobutylene (IB) in solvent mixture of hexane/methylene dichloride (n-Hex/CH2Cl2 = 2/1, V/V). VE played very important roles in decreasing cationicity of the growing chain ends, suppressing side reactions of chain transfer and termination during polymerization, leading to production of high molecular weight PIBs. PIBs with high yields, having very high weight-average molecular weight (Mw) of 1117000 and 370000 g/tool could be synthesized with H2O/AICl3/VE initiating system at VE concentration of 5.4 mmol/L at -80 and -60 ℃ respectively. Molecular weight of PIB increased remarkably with increasing VE concentration. The reaction order with respect to VE concentration was determined to be -3.52 via FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe. The negative reaction order of VE was consistent with its retarding effect on IB polymerization by interacting with the propagating species. Molecular weight of PIB decreased with increasing polymerization temperature. The activation energy for polymerization degree (Eop) could be determined to be around -23 kJ/mol when VE concentration was 5.4 mmol/L or 6.4 mmol/L. A novel simple but effective initiating system of H2O/AlCl3/veratrole (VE) has been developed to synthesize high molecular weight polyisobutylene (PIB) at elevated temperatures via cationic polymerization of isobutylene (IB) in solvent mixture of hexane/methylene dichloride (n-Hex/CH2Cl2 = 2/1, V/V). VE played very important roles in decreasing cationicity of the growing chain ends, suppressing side reactions of chain transfer and termination during polymerization, leading to production of high molecular weight PIBs. PIBs with high yields, having very high weight-average molecular weight (Mw) of 1117000 and 370000 g/tool could be synthesized with H2O/AICl3/VE initiating system at VE concentration of 5.4 mmol/L at -80 and -60 ℃ respectively. Molecular weight of PIB increased remarkably with increasing VE concentration. The reaction order with respect to VE concentration was determined to be -3.52 via FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe. The negative reaction order of VE was consistent with its retarding effect on IB polymerization by interacting with the propagating species. Molecular weight of PIB decreased with increasing polymerization temperature. The activation energy for polymerization degree (Eop) could be determined to be around -23 kJ/mol when VE concentration was 5.4 mmol/L or 6.4 mmol/L.
出处 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2013年第8期1139-1147,共9页 高分子科学(英文版)
基金 financially supported by the National Natural Science Foundation of China(No.20934001)
关键词 ISOBUTYLENE Molecular weight Cationic polymerization POLYISOBUTYLENE Kinetics. Isobutylene Molecular weight Cationic polymerization Polyisobutylene Kinetics.
  • 相关文献

同被引文献40

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部