期刊文献+

基于模糊化符号复杂度的脑电运动想象识别算法 被引量:1

EEG Recognition Algorithm of Motor Imagery Based on Fuzzy Symbolic complexity
下载PDF
导出
摘要 提出一种基于模糊化符号复杂度的运动想象脑电信号特征提取与识别方法。在脑电信号的复杂度细粒化多符号度量中引入模糊算法,用sigmoid函数模糊化处理,逻辑判断得到模糊化符号复杂度。取细粒化指数n为2,提取模糊化符号复杂度作为特征值,最后利用支持向量机对脑电运动想象任务进行分类识别。实验结果表明,以模糊化符号复杂度为特征的分类方法,对左右手运动想象脑电信号的分类识别率最高达88.67%,优于二值化Lempel-Ziv复杂度算法。 A method of Electroencephalogram (EEG)feature extraction and recognition of motor imagery based on fuzzy symbolic complexity is proposed. Introduce Fuzzy algorithm in the EEG complexity fine-grained and multi- symbol metrics, fuzzy processing with the sigmoid function, and calculate fuzzy symbolic complexity by logical judgment. Select the fine graining index n as 2, extract fuzzy symbolic complexity as a characteristic value, and finally use the Support Vector Machine to classify EEG consciousness task of motor imagery. The experimental result shows that the average classification accuracy of EEG of two hands motor imagery can reach 88.67% to the highest owing to the classification method featured by fuzzy symbolic complexity, which excels the algorithm of binary quan- tification Lempel-Ziv complexity.
出处 《传感技术学报》 CAS CSCD 北大核心 2013年第5期595-599,共5页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61172134) 浙江省自然科学基金项目(LY12F03006)
关键词 运动想象 模糊化 脑机接口 特征提取 motor imagery fuzzy symbolic complexity brain-computer interface feature extraction
  • 相关文献

参考文献12

二级参考文献106

共引文献130

同被引文献23

  • 1柯大观,张宏,童勤业.格子复杂性和符号序列的细粒化[J].物理学报,2005,54(2):534-542. 被引量:11
  • 2柯大观,童勤业.排列复杂性度量应用于脑机接口信号分析[J].传感技术学报,2007,20(3):596-600. 被引量:4
  • 3Franks N P. General Anaesthesia:From Molecular Targets to Neu- ronal Pathways of Sleep and Arousal[J]. Nat Rev Neurosci, 2008, 9(5) : 370-386.
  • 4Jameson L C, Sloan T B. Using EEG to Monitor Anesthesia Drug Effects During Surgery [J]. J Clin Monit Comput, 2006, 20 (6) : 445-472.
  • 5Groeott H P, Davie S, Fedorow C. Monitoring of Brain Function in Anesthesia and Intensive Care [ J ]. Curr Opin Anaesthesiol, 2010, 23(6) :759-764.
  • 6Rampil I J. A Primer for EEG Signal Processing in Anesthesia[J]. Anesthesiology, 1998,89(4) : 980-1002.
  • 7Butch N R. Period Analysis of EEG on a Grneral-Purpose Digtal Computer[J]. Ann N Y Acad Sci 1964,155:827-43.
  • 8Drummond J C, Brann C A, Perkins D E. A Comparison of Median Frequency, Spectral Edge Frequency, a Frequency Band Power Ratio, Total Power, and Dominance Shift in the Determination of Depth of Anaesthesia [J]. Acta Anaesthesiogica Scandinavica, 1991,47:449-45.
  • 9Schwender D, Daunderer M, Mulzer S, et al. Spectral Edge Fre- quency of the Electroencephalogram to Monitor "Depth" of Anaes- thesia with Isoflurane or Propofo [J]. British Journal of Anaesthe- sia, 1996,77: 179-184.
  • 10Anonymous. Aspect Medical Battles Standard Practice Loyalty to Sell Monitoring Device[J]. Health Industry Today, 1996,59(12) :7.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部